36,181 research outputs found
A review of dynamic inflow and its effect on experimental correlations
A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations
Generalized (m,k)-Zipf law for fractional Brownian motion-like time series with or without effect of an additional linear trend
We have translated fractional Brownian motion (FBM) signals into a text based
on two ''letters'', as if the signal fluctuations correspond to a constant
stepsize random walk. We have applied the Zipf method to extract the
exponent relating the word frequency and its rank on a log-log plot. We have
studied the variation of the Zipf exponent(s) giving the relationship between
the frequency of occurrence of words of length made of such two letters:
is varying as a power law in terms of . We have also searched how
the exponent of the Zipf law is influenced by a linear trend and the
resulting effect of its slope. We can distinguish finite size effects, and
results depending whether the starting FBM is persistent or not, i.e. depending
on the FBM Hurst exponent . It seems then numerically proven that the Zipf
exponent of a persistent signal is more influenced by the trend than that of an
antipersistent signal. It appears that the conjectured law
only holds near . We have also introduced considerations based on the
notion of a {\it time dependent Zipf law} along the signal.Comment: 24 pages, 12 figures; to appear in Int. J. Modern Phys
Hingeless helicopter rotor with improved stability
Improved stability was provided in a hingeless helicopter rotor by inclining the principal elastic flexural axes and coupling pitching of the rotor blade with the lead-lag bending of the blade. The primary elastic flex axes were inclined by constructing the blade of materials that display non-uniform stiffness, and the specification described various cross section distributions and the resulting inclined flex axes. Arrangements for varying the pitch of the rotor blade in a predetermined relationship with lead-lag bending of the blade, i.e., bending of the blade in a plane parallel to its plane of rotation were constructed
New design of hingeless helicopter rotor improves stability
Cantilever blades are attached directly to rotor hub, thereby substantially reducing cost and complexity and increasing reliability of helicopter rotor. Combination of structural flap-lag coupling and pitch-lag coupling provides damping of 6 to 10%, depending on magnitude of coupling parameters
Rotorcraft aeroelastic stability
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed
Survey of Army/NASA rotorcraft aeroelastic stability research
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed
Recurrent shell infall events in a B0.5e star: HD 58978 1979-1988
Infall from the circumstellar envelope onto the bright B0.5 IVe star, HD 58978 was studied. The IUE data indicate that the star was surrounded by a low and moderately ionized circumstellar shell at least 12 times between 1979 and 1988. During 6 of these episodes, the signatures of cool circumstellar material were redshifted with respect to the photosphere by 20 to 80 km/sec. The data indicate that the transition from infall to minimal shell absorption can occur in under 10 days, and are consistent either with infall phases lasting up to 6 months, or with infall episodes shorter than 10 to 15 days. The long term behavior of the shell episodes is compared with variability in the stellar wind
- …