6,235 research outputs found

    The Small-x Behaviour of the Singlet Polarized Structure Function g_2 in the Double Logarithmic Approximation

    Get PDF
    The small-x behavior of the singlet contributions to the polarized structure function g_2(x,Q^2) is calculated in the double-logarithmic approximation of perturbative QCD. The dominant contribution is due to the gluons which, in contrast to the unpolarized case, mix with the fermions also in the small-x domain. We find a power-like growth in 1/x in the odd-signature parts of the amplitude with the same power as in the singlet function g_1(x,Q^2) at x<< 1.Comment: 20 pages, latex, 3 ps figure

    Exclusive diffractive processes at HERA within the dipole picture

    Get PDF
    We present a simultaneous analysis, within an impact parameter dependent saturated dipole model, of exclusive diffractive vector meson (J/psi, phi and rho) production, deeply virtual Compton scattering and the total gamma* p cross section data measured at HERA. Various cross sections measured as a function of the kinematic variables Q^2, W and t are well described, with little sensitivity to the details of the vector meson wave functions. We determine the properties of the gluon density in the proton in both longitudinal and transverse dimensions, including the impact parameter dependent saturation scale. The overall success of the description indicates universality of the emerging gluon distribution and proton shape.Comment: 48 pages, 28 figures, the final version to appear in Physical Review

    High Energy Quark-Antiquark Elastic scattering with Mesonic Exchange

    Full text link
    We studies the high energy elastic scattering of quark anti-quark with an exchange of a mesonic state in the tt channel with −t/Λ2≫1-t/\Lambda^{2} \gg 1. Both the normalization factor and the Regge trajectory can be calculated in PQCD in cases of fixed (non-running) and running coupling constant. The dependence of the Regge trajectory on the coupling constant is highly non-linear and the trajectory is of order of 0.20.2 in the interesting physical range.Comment: 29 page

    The correlation potential in density functional theory at the GW-level: spherical atoms

    Full text link
    As part of a project to obtain better optical response functions for nano materials and other systems with strong excitonic effects we here calculate the exchange-correlation (XC) potential of density-functional theory (DFT) at a level of approximation which corresponds to the dynamically- screened-exchange or GW approximation. In this process we have designed a new numerical method based on cubic splines which appears to be superior to other techniques previously applied to the "inverse engineering problem" of DFT, i.e., the problem of finding an XC potential from a known particle density. The potentials we obtain do not suffer from unphysical ripple and have, to within a reasonable accuracy, the correct asymptotic tails outside localized systems. The XC potential is an important ingredient in finding the particle-conserving excitation energies in atoms and molecules and our potentials perform better in this regard as compared to the LDA potential, potentials from GGA:s, and a DFT potential based on MP2 theory.Comment: 13 pages, 9 figure

    A polarized version of the CCFM equation for gluons

    Get PDF
    A derivation for a polarized CCFM evolution equation which is suitable to describe the scaling behavior of the the unintegrated polarized gluon density is given. We discuss the properties of this polarized CCFM equation and compare it to the standard CCFM equation in the unpolarized case.Comment: 15 pages, 6 figures, RevTeX, some minor typos corrected, version to appear in Phys. Rev.

    Saturation and geometric scaling in DIS at small x

    Full text link
    We present various aspects of the saturation model which provides good description of inclusive and diffractive DIS at small x. The model uses parton saturation ideas to take into account unitarity requirements. A new scaling predicted by the model in the small x domain is successfully confronted with the data.Comment: Presented at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 June 2001, minor corrections, some references adde

    QCD analysis of the diffractive structure function F_2^{D(3)}

    Get PDF
    The proton diffractive structure function F2D(3)F_2^{D(3)} measured in the H1 and ZEUS experiments at HERA is analyzed in terms of both Regge phenomenology and perturbative QCD evolution. A new method determines the values of the Regge intercepts in ``hard'' diffraction, confirming a higher value of the Pomeron intercept than for soft physics. The data are well described by a QCD analysis in which point-like parton distributions, evolving according to the DGLAP equations, are assigned to the leading and sub-leading Regge exchanges. The gluon distributions are found to be quite different for H1 and ZEUS. A {\it global fit} analysis, where a higher twist component is taken from models, allows us to use data in the whole available range in diffractive mass and gives a stable answer for the leading twist contribution. We give sets of quark and gluon parton distributions for the Pomeron, and predictions for the charm and the longitudinal proton diffractive structure function from the QCD fit. An extrapolation to the Tevatron range is compared with CDF data on single diffraction. Conclusions on factorization breaking depend critically whether H1 (strong violation) or ZEUS (compatibility at low ÎČ\beta) fits are taken into account.Comment: 24 page

    Unifying approach to hard diffraction

    Get PDF
    We find a consistency between two different approaches of hard diffraction, namely the QCD dipole model and the Soft Colour Interaction approach. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small xBjx_{Bj} regime is proposed.Comment: 4pages, 1 figure, letter submitted for publicatio

    Testing the dynamics of high energy scattering using vector meson production

    Full text link
    I review work on diffractive vector meson production in photon-proton collisions at high energy and large momentum transfer, accompanied by proton dissociation and a large rapidity gap. This process provides a test of the high energy scattering dynamics, but is also sensitive to the details of the treatment of the vector meson vertex. The emphasis is on the description of the process by a solution of the non-forward BFKL equation, i.e. the equation describing the evolution of scattering amplitudes in the high-energy limit of QCD. The formation of the vector meson and the non-perturbative modeling needed is also briefly discussed.Comment: 17 pages, 8 figures. Brief review to appear in Mod. Phys. Lett.

    Combined electrical transport and capacitance spectroscopy of a MoS2−LiNbO3{\mathrm{MoS_2-LiNbO_3}} field effect transistor

    Get PDF
    We have measured both the current-voltage (ISDI_\mathrm{SD}-VGSV_\mathrm{GS}) and capacitance-voltage (CC-VGSV_\mathrm{GS}) characteristics of a MoS2−LiNbO3\mathrm{MoS_2-LiNbO_3} field effect transistor. From the measured capacitance we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISDI_\mathrm{SD}-VGSV_\mathrm{GS} characteristics over the \emph{entire range} of VGSV_\mathrm{GS}. Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.Comment: to appear in Applied Physics Letter
    • 

    corecore