29,003 research outputs found
Theory of wing rock
A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained
New urea-absorbing polymers for artificial kidney machines
Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia
Aldehyde-containing urea-absorbing polysaccharides
A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo
Method of cross-linking polyvinyl alcohol and other water soluble resins
A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries
High Temperature Superfluid and Feshbach Resonance
We study an effective field theory describing cold fermionic atoms near a
Feshbach resonance. The theory gives a unique description of the dynamics in
the limit that the energy of the Feshbach resonance is tuned to be twice that
of the Fermi surface. We show that in this limit the zero temperature
superfluid condensate is of order the Fermi energy, and obtain a critical
temperature Comment: 9 pages, 3 figures, RevTe
Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions
We study simple lattice systems to demonstrate the influence of
interpenetrating bond networks on phase behavior. We promote interpenetration
by using a Hamiltonian with a weakly repulsive interaction with nearest
neighbors and an attractive interaction with second-nearest neighbors. In this
way, bond networks will form between second-nearest neighbors, allowing for two
(locally) distinct networks to form. We obtain the phase behavior from analytic
solution in the mean-field approximation and exact solution on the Bethe
lattice. We compare these results with exact numerical results for the phase
behavior from grand canonical Monte Carlo simulations on square, cubic, and
tetrahedral lattices. All results show that these simple systems exhibit rich
phase diagrams with two fluid-fluid critical points and three thermodynamically
distinct phases. We also consider including third-nearest-neighbor
interactions, which give rise to a phase diagram with four critical points and
five thermodynamically distinct phases. Thus the interpenetration mechanism
provides a simple route to generate multiple liquid phases in single-component
systems, such as hypothesized in water and observed in several model and
experimental systems. Additionally, interpenetration of many such networks
appears plausible in a recently considered material made from nanoparticles
functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.
Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study
We report a simulation study for bottle-brush polymers grafted on a rigid
backbone. Using a standard coarse-grained bead-spring model extensive molecular
dynamics simulations for such macromolecules under good solvent conditions are
performed. We consider a broad range of parameters and present numerical
results for the monomer density profile, density of the untethered ends of the
grafted flexible backbones and the correlation function describing the range
that neighboring grafted bottle-brushes are affected by the presence of the
others due to the excluded volume interactions. The end beads of the flexible
backbones of the grafted bottle-brushes do not access the region close to the
rigid backbone due to the presence of the side chains of the grafted
bottle-brush polymers, which stretch further the chains in the radial
directions. Although a number of different correlation lengths exist as a
result of the complex structure of these macromolecules, their properties can
be tuned with high accuracy in good solvents. Moreover, qualitative differences
with "typical" bottle-brushes are discussed. Our results provide a first
approach to characterizing such complex macromolecules with a standard bead
spring model.Comment: To appear in Journal of Physics Condensed Matter (2011
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
- …