138 research outputs found
Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings
Within the framework of quantization of the macroscopic electromagnetic
field, a master equation describing both the resonant dipole-dipole interaction
(RDDI) and the resonant atom-field interaction (RAFI) in the presence of
dispersing and absorbing macroscopic bodies is derived, with the relevant
couplings being expressed in terms of the surroundings-assisted Green tensor.
It is shown that under certain conditions the RDDI can be regarded as being
governed by an effective Hamiltonian. The theory, which applies to both weak
and strong atom-field coupling, is used to study the resonant energy exchange
between two (two-level) atoms sharing initially a single excitation. In
particular, it is shown that in the regime of weak atom-field coupling there is
a time window, where the energy transfer follows a transfer-rate law of the
type obtained by ordinary second-order perturbation theory. Finally, the
spectrum of the light emitted during the energy transfer is studied and the
line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in
Optics and Spectroscop
Casimir Forces and Graphene Sheets
The Casimir force between two infinitely thin parallel sheets in a setting of
such sheets is found. The finite two-dimensional conductivities, which
describe the dispersive and absorptive properties of each sheet, are taken into
account, whereupon the theory is applied to interacting graphenes. By exploring
similarities with in-plane optical spectra for graphite, the conductivity of
graphene is modeled as a combination of Lorentz type oscillators. We find that
the graphene transparency and the existence of a universal constant
conductivity result in graphene/graphene Casimir interaction at
large separations to have the same distance dependence as the one for perfect
conductors but with much smaller magnitude
Quantum state conversion by cross-Kerr interaction
A generalized Mach-Zehnder-type interferometer equipped with cross-Kerr
elements is proposed to convert N-photon truncated single-mode quantum states
into (N+1)-mode single-photon states, which are suitable for further state
manipulation by means of beam splitter arrays and ON/OFF-detections, and vice
versa. Applications to the realization of unitary and non-unitary
transformations, quantum state reconstruction, and quantum telemanipulation are
studied.Comment: 22 pages, 4 figures, using a4.st
Van-der-Waals potentials of paramagnetic atoms
We study single- and two-atom van der Waals interactions of ground-state
atoms which are both polarizable and paramagnetizable in the presence of
magneto-electric bodies within the framework of macroscopic quantum
electrodynamics. Starting from an interaction Hamiltonian that includes
particle spins, we use leading-order perturbation theory for the van der Waals
potentials expressed in terms of the polarizability and magnetizability of the
atom(s). To allow for atoms embedded in media, we also include local-field
corrections via the real-cavity model. The general theory is applied to the
potential of a single atom near a half space and that of two atoms embedded in
a bulk medium or placed near a sphere, respectively.Comment: 18 pages, 3 figures, 1 tabl
Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation
Within the framework of exact quantum electrodynamics in dispersing and
absorbing media, we have studied the quantum state of the radiation emitted
from an initially in the upper state prepared two-level atom in a high-
cavity, including the regime where the emitted photon belongs to a wave packet
that simultaneously covers the areas inside and outside the cavity. For both
continuing atom--field interaction and short-term atom--field interaction, we
have determined the spatio-temporal shape of the excited outgoing wave packet
and calculated the efficiency of the wave packet to carry a one-photon Fock
state. Furthermore, we have made contact with quantum noise theories where the
intracavity field and the field outside the cavity are regarded as
approximately representing independent degrees of freedom such that two
separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.
Strong exciton-plasmon coupling in semiconducting carbon nanotubes
We study theoretically the interactions of excitonic states with surface
electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled
carbon nanotubes. We show that these interactions can result in strong
exciton-surface-plasmon coupling. The exciton absorption line shape exhibits
Rabi splitting ~0.1 eV as the exciton energy is tuned to the nearest interband
surface plasmon resonance of the nanotube. We also show that the quantum
confined Stark effect may be used as a tool to control the exciton binding
energy and the nanotube band gap in carbon nanotubes in order, e.g., to bring
the exciton total energy in resonance with the nearest interband plasmon mode.
The exciton-plasmon Rabi splitting we predict here for an individual carbon
nanotube is close in its magnitude to that previously reported for hybrid
plasmonic nanostructures artificially fabricated of organic semiconductors on
metallic films. We expect this effect to open up paths to new tunable
optoelectronic device applications of semiconducting carbon nanotubes.Comment: 22 pages, 8 figures, accepted for PR
Casimir effect from macroscopic quantum electrodynamics
The canonical quantization of macroscopic electromagnetism was recently
presented in New J. Phys. 12 (2010) 123008. This theory is here used to derive
the Casimir effect, by considering the special case of thermal and zero-point
fields. The stress-energy-momentum tensor of the canonical theory follows from
Noether's theorem, and its electromagnetic part in thermal equilibrium gives
the Casimir energy density and stress tensor. The results hold for arbitrary
inhomogeneous magnetodielectrics and are obtained from a rigorous quantization
of electromagnetism in dispersive, dissipative media. Continuing doubts about
the status of the standard Lifshitz theory as a proper quantum treatment of
Casimir forces do not apply to the derivation given here. Moreover, the correct
expressions for the Casimir energy density and stress tensor inside media
follow automatically from the simple restriction to thermal equilibrium,
without the need for complicated thermodynamical or mechanical arguments.Comment: Minor corrections. 21 pages. To appear in New J. Phy
Canonical quantization of macroscopic electromagnetism
Application of the standard canonical quantization rules of quantum field
theory to macroscopic electromagnetism has encountered obstacles due to
material dispersion and absorption. This has led to a phenomenological approach
to macroscopic quantum electrodynamics where no canonical formulation is
attempted. In this paper macroscopic electromagnetism is canonically quantized.
The results apply to any linear, inhomogeneous, magnetodielectric medium with
dielectric functions that obey the Kramers-Kronig relations. The prescriptions
of the phenomenological approach are derived from the canonical theory.Comment: 21 pages, additional reference
- …