52,196 research outputs found
Super Jackstraws and Super Waterwheels
We construct various new BPS states of D-branes preserving 8 supersymmetries.
These include super Jackstraws (a bunch of scattered D- or (p,q)-strings
preserving supersymmetries), and super waterwheels (a number of D2-branes
intersecting at generic angles on parallel lines while preserving
supersymmetries). Super D-Jackstraws are scattered in various dimensions but
are dynamical with all their intersections following a common null direction.
Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show
that the SO(2) subgroup of SL(2,R), the group of classical S-duality
transformations in IIB theory, can be used to generate this latter
configuration of variously charged (p,q)-strings intersecting at various
angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries
as long as the `critical' Born-Infeld electric fields are along the common
direction.Comment: 23 pages, 10 figure
QCD effective action with a most general homogeneous field background
We consider one-loop effective action of SU(3) QCD with a most general
constant chromomagnetic (chromoelectric) background which has two independent
Abelian field components. The effective potential with a pure magnetic
background has a local minimum only when two Abelian components H_{\mu\nu}^3
and H_{\mu\nu}^8 of color magnetic field are orthogonal to each other. The
non-trivial structure of the effective action has important implication in
estimating quark-gluon production rate and p_T-distribution in quark-gluon
plasma. In general the production rate depends on three independent Casimir
invariants, in particular, it depends on the relative orientation between
chromoelectric fields.Comment: 6 pages, 3 figures (9 pages in published version
Lineal Trails of D2-D2bar Superstrings
We study the superstrings suspended between a D2- and an anti-D2-brane. We
quantize the string in the presence of some general configuration of gauge
fields over the (anti-)D-brane world volumes. The interstring can move only in
a specific direction that is normal to the difference of the electric fields of
each (anti-)D-branes. Especially when the electric fields are the same, the
interstring cannot move. We obtain the condition for the tachyons to disappear
from the spectrum.Comment: 15 pages with 4 figures, referenced added, Sec. 5 on the spectrum
made cleare
Emergence of canonical ensembles from pure quantum states
We consider a system weakly interacting with a bath as a thermodynamic
setting to establish a quantum foundation of statistical physics. It is shown
that even if the composite system is initially in an arbitrary nonequilibrium
pure quantum state, the unitary dynamics of a generic weak interaction almost
always drives the subsystem into the canonical ensemble, in the usual sense of
typicality. A crucial step is taken by assuming that the matrix elements of the
interaction Hamiltonian have random phases, while their amplitudes are left
unrestricted
Dilaton as a Dark Matter Candidate and its Detection
Assuming that the dilaton is the dark matter of the universe, we propose an
experiment to detect the relic dilaton using the electromagnetic resonant
cavity, based on the dilaton-photon conversion in strong electromagnetic
background. We calculate the density of the relic dilaton, and estimate the
dilaton mass for which the dilaton becomes the dark matter of the universe.
With this we calculate the dilaton detection power in the resonant cavity, and
compare it with the axion detection power in similar resonant cavity
experiment.Comment: 23 pages, 2 figure
Amplifier for scanning tunneling microscopy at MHz frequencies
Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of
circa 1kHz around DC. Here, we develop, build and test a novel amplifier
circuit capable of measuring the tunneling current in the MHz regime while
simultaneously performing conventional STM measurements. This is achieved with
an amplifier circuit including a LC tank with a quality factor exceeding 600
and a home-built, low-noise high electron mobility transistor (HEMT). The
amplifier circuit functions while simultaneously scanning with atomic
resolution in the tunneling regime, i.e. at junction resistances in the range
of giga-ohms, and down towards point contact spectroscopy. To enable high
signal-to-noise and meet all technical requirements for the inclusion in a
commercial low temperature, ultra-high vacuum STM, we use superconducting
cross-wound inductors and choose materials and circuit elements with low heat
load. We demonstrate the high performance of the amplifier by spatially mapping
the Poissonian noise of tunneling electrons on an atomically clean Au(111)
surface. We also show differential conductance spectroscopy measurements at
3MHz, demonstrating superior performance over conventional spectroscopy
techniques. Further, our technology could be used to perform impedance matched
spin resonance and distinguish Majorana modes from more conventional edge
states
Infrared Hall conductivity of NaCoO
We report infrared Hall conductivity of
NaCoO thin films determined from Faraday rotation angle
measurements. exhibits two types of hole
conduction, Drude and incoherent carriers. The coherent Drude carrier shows a
large renormalized mass and Fermi liquid-like behavior of Hall scattering rate,
. The spectral weight is suppressed and disappears at T
= 120K. The incoherent carrier response is centered at mid-IR frequency and
shifts to lower energy with increasing T. Infrared Hall constant is positive
and almost independent of temperature in sharp contrast with the dc-Hall
constant.Comment: 5 Pages, 5 Figures. Author list corrected in metadata only, paper is
unchange
Program of analytical and experimental study of porous metal ionizers summary report
Cesium ion emission of porous tungsten material
Spin diffusion of correlated two-spin states in a dielectric crystal
Reciprocal space measurements of spin diffusion in a single crystal of
calcium fluoride (CaF) have been extended to dipolar ordered states. The
experimental results for the component of the spin diffusion parallel with the
external field are cm/s for the
[001] direction and cm/s for the
[111] direction. The diffusion rates for dipolar order are significantly faster
than those for Zeeman order and are considerably faster than predicted by
simple theoretical models. It is suggested that constructive interference in
the transport of the two spin state is responsible for this enhancement. As
expected the anisotropy in the diffusion rates is observed to be significantly
less for dipolar order compared to the Zeeman case.Comment: 4 pages, 2 figures. Resubmitted to PRL - new figure added /
discussion expande
- …
