1,991 research outputs found

    Characteristic polynomials in real Ginibre ensembles

    Get PDF
    We calculate the average of two characteristic polynomials for the real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart. Considered as quadratic forms they determine a skew-symmetric kernel from which all complex eigenvalue correlations can be derived. Our results are obtained in a very simple fashion without going to an eigenvalue representation, and are completely new in the chiral case. They hold for Gaussian ensembles which are partly symmetric, with kernels given in terms of Hermite and Laguerre polynomials respectively, depending on an asymmetry parameter. This allows us to interpolate between the maximally asymmetric real Ginibre and the Gaussian Orthogonal Ensemble, as well as their chiral counterparts

    Statistics of conductance and shot-noise power for chaotic cavities

    Get PDF
    We report on an analytical study of the statistics of conductance, gg, and shot-noise power, pp, for a chaotic cavity with arbitrary numbers N1,2N_{1,2} of channels in two leads and symmetry parameter β=1,2,4\beta = 1,2,4. With the theory of Selberg's integral the first four cumulants of gg and first two cumulants of pp are calculated explicitly. We give analytical expressions for the conductance and shot-noise distributions and determine their exact asymptotics near the edges up to linear order in distances from the edges. For 0<g<10<g<1 a power law for the conductance distribution is exact. All results are also consistent with numerical simulations.Comment: 7 pages, 3 figures. Proc. of the 3rd Workshop on Quantum Chaos and Localisation Phenomena, Warsaw, Poland, May 25-27, 200

    On the comparison of volumes of quantum states

    Full text link
    This paper aims to study the \a-volume of \cK, an arbitrary subset of the set of N×NN\times N density matrices. The \a-volume is a generalization of the Hilbert-Schmidt volume and the volume induced by partial trace. We obtain two-side estimates for the \a-volume of \cK in terms of its Hilbert-Schmidt volume. The analogous estimates between the Bures volume and the \a-volume are also established. We employ our results to obtain bounds for the \a-volume of the sets of separable quantum states and of states with positive partial transpose (PPT). Hence, our asymptotic results provide answers for questions listed on page 9 in \cite{K. Zyczkowski1998} for large NN in the sense of \a-volume. \vskip 3mm PACS numbers: 02.40.Ft, 03.65.Db, 03.65.Ud, 03.67.M

    Correlation functions of impedance and scattering matrix elements in chaotic absorbing cavities

    Get PDF
    Wave scattering in chaotic systems with a uniform energy loss (absorption) is considered. Within the random matrix approach we calculate exactly the energy correlation functions of different matrix elements of impedance or scattering matrices for systems with preserved or broken time-reversal symmetry. The obtained results are valid at any number of arbitrary open scattering channels and arbitrary absorption. Elastic enhancement factors (defined through the ratio of the corresponding variance in reflection to that in transmission) are also discussed.Comment: 10 pages, 2 figures (misprints corrected and references updated in ver.2); to appear in Acta Phys. Pol. A (Proceedings of the 2nd Workshop on Quantum Chaos and Localization Phenomena, May 19-22, 2005, Warsaw

    Induced Ginibre ensemble of random matrices and quantum operations

    Get PDF
    A generalisation of the Ginibre ensemble of non-Hermitian random square matrices is introduced. The corresponding probability measure is induced by the ensemble of rectangular Gaussian matrices via a quadratisation procedure. We derive the joint probability density of eigenvalues for such induced Ginibre ensemble and study various spectral correlation functions for complex and real matrices, and analyse universal behaviour in the limit of large dimensions. In this limit the eigenvalues of the induced Ginibre ensemble cover uniformly a ring in the complex plane. The real induced Ginibre ensemble is shown to be useful to describe statistical properties of evolution operators associated with random quantum operations, for which the dimensions of the input state and the output state do differ.Comment: 2nd version, 34 pages, 5 figure

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma
    corecore