437 research outputs found

    Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components

    Get PDF
    The recently reported finding that plant matter and living plants produce significant amounts of the important greenhouse gas methane under aerobic conditions has led to an intense scientific and public controversy. Whereas some studies question the up-scaling method that was used to estimate the global source strength, others have suggested that experimental artifacts could have caused the reported signals, and two studies, one based on isotope labeling, have recently reported the absence of CH<sub>4</sub> emissions from plants. Here we show – using several independent experimental analysis techniques – that dry and detached fresh plant matter, as well as several structural plant components, emit significant amounts of methane upon irradiation with UV light and/or heating. Emissions from UV irradiation are almost instantaneous, indicating a direct photochemical process. Long-time irradiation experiments demonstrate that the size of the CH<sub>4</sub> producing reservoir is large, exceeding potential interferences from degassing or desorption processes by several orders of magnitude. A dry leaf of a pure <sup>13</sup>C plant produces <sup>13</sup>CH<sub>4</sub> at a similar rate as dry leaves of non-labeled plants produce non-labeled methane

    Well-Being as Harmony

    Get PDF
    In this paper, I sketch out a novel theory of well-being according to which well-being is constituted by harmony between mind and world. The notion of harmony I develop has three aspects. First there is correspondence between mind and world in the sense that events in the world match the content of our mental states. Second there is positive orientation towards the world, meaning that we have pro-attitudes towards the world we find ourselves in. Third there is fitting response to the world. Taken together these three aspects make up an ideal of being attuned to, or at home in, the world. Such harmony between mind and world constitutes well-being. Its opposite – being disoriented, ill-at-ease in, or hostile to the world – makes a life go poorly. And, as we shall see, many of the things that intuitively contribute to well-being are instantiating one or more of the three aspects of harmony

    An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

    Get PDF
    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions

    A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Full text link

    First measurement of Ωc 0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon Omega_c^0 is measured for the first time via its hadronic decay into Omega-pi+ at midrapidity (|y|<0.5) in proton–proton (pp) collisions at the centre-of-mass energy sqrt(s) = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c . The pT dependence of the Omega_C^0-baryon production relative to the prompt D^0-meson and to the prompt Csi_C^0-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of Omega_c^0 and prompt Lambda_c^+ baryons multiplied by the Omega- pi+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e- collisions

    Photoproduction of low-pT J/ψ from peripheral to central Pb–Pb collisions at 5.02 TeV

    Get PDF
    An excess of J/ψ yield at very low transverse momentum (pT < 0.3 GeV/c), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb–Pb collisions at a center-of-mass energy per nucleon pair of sqrt(sNN) = 5.02 TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity (2.5 < y <4). The nuclear modification factor at very low pT and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at sqrt(sNN) = 2.76 TeV, confirming the clear excess over hadronic production in the pT range 0-0.3 GeV/c and the centrality range 70–90%, and establishing an excess with a significance greater than 5σ also in the 50–70% and 30–50% centrality ranges. The results are compared with earlier measurements at sqrt(sNN) = 2.76 TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap

    Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at sNN=5.02TeV at the CERN Large Hadron Collider

    Get PDF
    This Letter reports on the first measurements of transverse momentum dependent flow angle n and flow magnitude vn fluctuations determined using new four-particle correlators. The measurements are performed for various centralities in Pb–Pb collisions at a center-of-mass energy per nucleon pair of √s NN = 5.02 TeV with ALICE at the CERN Large Hadron Collider. Both flow angle and flow magnitude fluctuations are observed in the presented centrality ranges and are strongest in the most central collisions and for a transverse momentum pT > 2 GeV/c. Comparison with theoretical models, including iEBE-VISHNU, MUSIC, and AMPT, show that the measurements exhibit unique sensitivities to the initial state of heavy-ion collisions

    Measurement of the Lifetime and Λ Separation Energy of _{Λ}^{3}H

    Get PDF
    The most precise measurements to date of the _{Λ}^{3}H lifetime τ and Λ separation energy B_{Λ} are obtained using the data sample of Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV collected by ALICE at the LHC. The _{Λ}^{3}H is reconstructed via its charged two-body mesonic decay channel (_{Λ}^{3}H→^{3}He+π^{-} and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and B_{Λ}=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the _{Λ}^{3}H structure is consistent with a weakly bound system
    corecore