250 research outputs found
Offâshell scattering by Coulombâlike potentials
We derive closed expressions for and interrelationships between offâshell and onâshell scattering quantities for Coulomb plus shortârange potentials. In particular we introduce offâshell Jost states and show how the transition matrices are obtained from these states. We discuss some formulas connecting the coordinate and momentum representatives of certain quantities. For the pure Coulomb case we derive analytic expressions for the Jost state and the offâshell Jost state for l=0 in the momentum representation
The Coulomb unitarity relation and some series of products of three Legendre functions
We obtain from the offâshell Coulomb unitarity relation a closed expression for Jâl = 0(2l+1)Pl(x) ĂQliÎł (ây) QlâiÎł (z), and we consider some related series of products of Legendre functions
Polarized fluorescence measurements on ordered photosynthetic antenna complexes Chlorosomes of Chloroflexus aurantiacus and B800-B850 antenna complexes of Rhodobacter sphaeroides
We have used a new and relatively easy approach to study the pigment-organization in chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus and in B800â850 antenna complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides. These particles were embedded in compressed and uncompressed gels and the polarized fluorescence was determined in a 90° setup. Assuming both a rotational symmetric distribution of the particles in the gel and of the transition dipole moments in the particles, the order parameters <P2> and <P4>, describing the orientation of the symmetry axis of the particles with respect to the direction of gel expansion can be determined. Moreover, the direction parameters, describing the orientation of the absorption and emission dipole moments with respect to the symmetry axis of the particles can be obtained.The value of <P2> is essential for quantitative interpretation of linear dichroism measurements and usually it is estimated from theoretical approaches, which may lead to incorrect results. For the rod-like chlorosomes the value of <P2> appears to be the same as predicted by the theoretical approach of Ganago, A. O., M. V. Fok, I. A. Abdourakhmanov, A. A. Solov'ev, and Yu. E. Erokhin (1980. Mol. Biol. [Mosc.]. 14:381â389). The agreement with linear dichroism results, analyzed with this theoretical approach shows that the transition dipole moments are indeed in good approximation distributed in a rotationally symmetric way around the long axis of the chlorosomes. Moreover, it appears those BChl c molecules, which fluoresce, are oriented in the same way with respect to the symmetry axis as the rest of these pigments, with the dipole moments close to parallel to the long axis.The B800â850 complexes appear to orient like discs, whereas the transition dipoles of the BChl a 800- and 850-nm bands are oriented almost perpendicular to the symmetry axis. These findings are in agreement with the minimal model for these complexes proposed by Kramer, H. J. M., R. van Grondelle, C. N. Hunter, W. H. J. Westerhuis, and J. Amesz (1984. Biochim. Biophys. Acta. 156â165).The amount of orientation of the particles appears to vary for different gels and it is lower than predicted by the theory of Ganago et al., showing that application of their approach for these particles leads to incorrect interpretations.The approach that is used in this study allows determination of orientations of those dipole moments, which transfer their excitation energy to the fluorescing species, in contrast to linear dichroism measurements, where the orientations of all absorbing dipole moments are studied. For the polarized fluorescence measurements, the amount of orientation of the particles is determined experimentally, whereas for linear dichroism this amount has to be estimated from theoretical models. The value of <P2> that can be determined from the fluorescence measurements can, however, also be used for a quantitative interpretation of the linear dichroism results
Effective field theory of 3He
3He and the triton are studied as three-body bound states in the effective
field theory without pions. We study 3He using the set of integral equations
developed by Kok et al. which includes the full off-shell T-matrix for the
Coulomb interaction between the protons. To leading order, the theory contains:
two-body contact interactions whose renormalized strengths are set by the NN
scattering lengths, the Coulomb potential, and a three-body contact
interaction. We solve the three coupled integral equations with a sharp
momentum cutoff, Lambda, and find that a three-body interaction is required in
3He at leading order, as in the triton. It also exhibits the same limit-cycle
behavior as a function of Lambda, showing that the Efimov effect remains in the
presence of the Coulomb interaction. We also obtain the difference between the
strengths of the three-body forces in 3He and the triton.Comment: 18 pages, 6 figures; further discussion and references adde
Triangle Diagram with Off-Shell Coulomb T-Matrix for (In-)Elastic Atomic and Nuclear Three-Body Processes
The driving terms in three-body theories of elastic and inelastic scattering
of a charged particle off a bound state of two other charged particles contain
the fully off-shell two-body Coulomb T-matrix describing the intermediate-state
Coulomb scattering of the projectile with each of the charged target particles.
Up to now the latter is usually replaced by the Coulomb potential, either when
using the multiple-scattering approach or when solving three-body integral
equations. General properties of the exact and the approximate on-shell driving
terms are discussed, and the accuracy of this approximation is investigated
numerically, both for atomic and nuclear processes including bound-state
excitation, for energies below and above the corresponding three-body
dissociation threshold, over the whole range of scattering angles.Comment: 22 pages, 11 figures, figures can be obtained upon request from the
Authors, revte
Generalized Faddeev equations in the AGS form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction
Theoretical description of reactions in general, and the theory for
reactions, in particular, needs to advance into the new century. Here deuteron
stripping processes off a target nucleus consisting of nucleons are
treated within the framework of the few-body integral equations theory. The
generalized Faddeev equations in the AGS form, which take into account the
target excitations, with realistic optical potentials provide the most advanced
and complete description of the deuteron stripping. The main problem in
practical application of such equations is the screening of the Coulomb
potential, which works only for light nuclei. In this paper we present a new
formulation of the Faddeev equations in the AGS form taking into account the
target excitations with explicit inclusion of the Coulomb interaction. By
projecting the -body operators onto target states, matrix three-body
integral equations are derived which allow for the incorporation of the excited
states of the target nucleons. Using the explicit equations for the partial
Coulomb scattering wave functions in the momentum space we present the AGS
equations in the Coulomb distorted wave representation without screening
procedure. We also use the explicit expression for the off-shell two-body
Coulomb scattering -matrix which is needed to calculate the effective
potentials in the AGS equations. The integrals containing the off-shell Coulomb
T-matrix are regularized to make the obtained equations suitable for
calculations. For and nucleon-target nuclear interactions we assume the
separable potentials what significantly simplifies solution of the AGS
equations.Comment: 34 pages, 13 figure
Scattering theory with the Coulomb potential
Basic features of a new surface-integral formulation of scattering theory are outlined. This formulation is valid for both short-range and Coulombic long-range interactions. New general definitions for the potential scattering amplitude are given. For the Coulombic potentials the generalized amplitude gives the physical on-shell amplitude without recourse to a renormalization procedure. New post and prior forms for the amplitudes of breakup, direct and rearrangement scattering in a Coulomb three-body system are presented
Scattering theory for arbitrary potentials
The fundamental quantities of potential scattering theory are generalized to
accommodate long-range interactions. New definitions for the scattering
amplitude and wave operators valid for arbitrary interactions including
potentials with a Coulomb tail are presented. It is shown that for the Coulomb
potential the generalized amplitude gives the physical on-shell amplitude
without recourse to a renormalization procedure.Comment: To be published in Phys Rev
A renormalisation group approach to two-body scattering in the presence of long-range forces
We apply renormalisation-group methods to two-body scattering by a
combination of known long-range and unknown short-range potentials. We impose a
cut-off in the basis of distorted waves of the long-range potential and
identify possible fixed points of the short-range potential as this cut-off is
lowered to zero. The expansions around these fixed points define the power
countings for the corresponding effective field theories. Expansions around
nontrivial fixed points are shown to correspond to distorted-wave versions of
the effective-range expansion. These methods are applied to scattering in the
presence of Coulomb, Yukawa and repulsive inverse-square potentials.Comment: 22 pages (RevTeX), 4 figure
N-d scattering above the deuteron breakup threshold
The complex Kohn variational principle and the (correlated) Hyperspherical
Harmonics technique are applied to study the N--d scattering above the deuteron
breakup threshold. The configuration with three outgoing nucleons is explicitly
taken into account by solving a set of differential equations with outgoing
boundary conditions. A convenient procedure is used to obtain the correct
boundary conditions at values of the hyperradius fm. The
inclusion of the Coulomb potential is straightforward and does not give
additional difficulties. Numerical results have been obtained for a simple
s-wave central potential. They are in nice agreement with the benchmarks
produced by different groups using the Faddeev technique. Comparisons are also
done with experimental elastic N--d cross section at several energies.Comment: LaTeX, 13 pages, 3 figure
- âŠ