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Off-shell scattering by Coulomb-like potentials 
H. van Haeringen 
Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands 
and Institutefor Theoretical Physics, P. O. Box 800, University ofGroningen, The Netherlands 

(Received 5 September 1978) 

We derive closed expressions for and interrelationships between off-shell and on-shell scattering 
quantities for Coulomb plus short-range potentials. In particular we introduce off-shell Jost 
states and show how the transition matrices are obtained from these states. We discuss some 
formulas connecting the coordinate and momentum representatives of certain quantities. For the 
pure Coulomb case we derive analytic expressions for the Jost state and the off-shell Jost state for 
I = 0 in the momentum representation. 

1. INTRODUCTION 

In this paper we study off-shell scattering by a potential 
which is the sum of the Coulomb potential and a local central 
potential of short range. We derive many interesting expres­
sions, notably for the Jost functions, the off-shell Jost func­
tions, and the on-shell and off-shell "Jost states." These 
quantities are closely connected with the transition matrix 
which plays such an important role in scattering theory. 

First, in Sec. 2, we confine ourselves to a general local 
short-range central potential. Here we derive many interre­
lationships between the above quantities. Only a few of these 
are well known, e.g., the defining expression for the (off­
shell) Jost functions in terms of the (off-shell) Jost solutions 
in the coordinate representation. We give the momentum 
representation equivalents of these expressions which have a 
somewhat simpler form. 

Some of the equations given in Sec. 2 are also valid for 
Coulomblike potentials. However, some have to be modified 
for such potentials with a long range. To this end we consider 
in Sec. 3 the pure Coulomb case. By working out a number of 
explicit expressions we pave the way for the treatment of the 
general case of Coulomb plus shortrange potentials, which 
will be given in Sec. 4. We also prove the validity of two 
conjectures made in Ref. 1. 

Furthermore, in Sec. 3 we derive some interesting ana­
lytic expressions, notably for the I = 0 Coulomb Jost state 
and the off-shell Jost state in the momentum representation. 
In these expressions we encounter a certain hypergeometric 
function which appears in many other Coulomb quantities. 
Only its argument is different for the various different cases. 

We will use mainly the notation of Refs. 1 and 2. In 
particular the energy is k ' with Imk!D and the energy depen­
dence ofG, Go and Twill be suppressed. However, instead of 
the Jost solutionjAk,r) and the off-shell Jost solutionjAk,q,r) 
of the radial differential equations we will use the Jost solu­
tion <rlkl r) and the off-shell Jost solution <rlkql r) of the 
partial-wave projected equations. Here q is an off-shell mo­
mentum variable for which we assume Imq;>O. We shall also 
consider the Hankel transforms of the above Jost solutions. 
These are denoted by (Plkl r)and(Plkql i), respectively. We 
call Ikl r> the Jost state and Ikql r) the off-shell Jost state. 

2. THE SHORT-RANGE POTENTIAL CASE 

In this section we confine ourselves to a local central 

potential V (r), having a short range. Let us first recall Fuda's 
definition of the off-shell Jost solutionJ:jAk,q,r) is that solu­
tion of the inhomogeneous differential equation 

( k' + ~ _ I (I + I) _ V(r»)!t(k,q,r) 
dr' r' 

= (k' - q')i'qrh ) + )(qr), 

which satisfies the asymptotic condition 

lim !t(k,q,r)e iqr = 1. 
r ~ oc 

We introduce the "state" Ikql i) by 

(rl kql r ) ===-(21 tr)II'(qrttft(k,q,r). 

(2.1) 

(2.2) 

This may be compared with the "state" Ikl i) that we intro­
duced before, 

<rl kl i) (2hr)I/'(krt'!t(k,r). (2.3) 

Let HI = HOI + VI be the partial-wave Hamiltonian, then we 
obtain from Eq. (2.1), 

(k 2 - HI) 1 kql t) = (k 2 - q2)lql r )0' (2.4a) 

that is, 

G ,-ilkql r) = GOi1lql r)o. (2.4b) 

Here Iql i)o is the Jost state corresponding to V O. In the 
coordinate representation one has 

<rlql i)o = (2/ tr)1I2/h j + )(qr). 

Furthermore, we denote the scattering state for V =0 and 
energy k' by Ikl), or by Ik) when no confusion arises, e.g., 
Tllkl) = Tllk). It should be noted that Eqs. (2.4) are valid 
only in the coordinate representation. We shall call <rl kql r) 
the off-shell Jost solution of the "inhomogeneous Schro­
dinger equation" corresponding to Eqs. (2.4). 

We would like to have a closed expression for Ikql r). It 
is easily seen from Eq. (2.4b) that GI G Oi ilql t>ois a particu­
lar solution of an inhomogeneous differential equation. If 
one adds to this quantity an arbitrary solution of the corre­
sponding homogeneous differential equation it remains a so­
lution of (2.4). Now we have, again in the coordinate repre­
sentation only, 

(2.5) 

Furthermore, any solution is a linear combination of Ikl i) 
and 1 kl!). Therefore, using G, = Go, + Go, TI Gal we obtain, 

Ikql r) = (1 + Go,T])lql i)o + c1lkl i> + c,lkl!). (2.6) 
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In order to determine Cl and C2 we consider the asymptotic 
behavior of the right-hand side. By using 

we obtain, for r- 00 , 

- -l1Tk <rlkl tXkl- I V!lqll t)o, 

r-oo. 

Since <rlkqll) has by definition the same asymptotic behav­
ior as <rlql t)o, namely, 

lim <rlkql t)qre- iqr = (2/1r)112, 

we find 

C1 = !1Tk <kl- I V!lql t)o, 

C2 = O. 

It is convenient to rewrite C1 in terms of the off-shell Jost 
/unction//...k,q). Fuda4 has given a closed expression which in 
our notation reads, 

ft(k,q) = 1 + !1Tq(q/k )'/i(k )<kl - iVII qll )0' (2.7a) 

Some equivalent expressions are 

(2.7b) 

(2.7c) 

= I + 11Tq(q/k)lft(k) o(ql! I V,lkl +). (2.7d) 

By substituting Cl in Eq. (2.6) and using (2.7a) we obtain the 
convenient expression, 

Ikql t) = (I + GOI T1)lql t)o + Ikl t)(k /q)I+! 

ft(k,q) - I 
X ft(k) . (2.8) 

From now on we shall suppress the argument k of the 
Jost function, so we writeft instead ofj/...k). 

When the potential has a short range the off-shell Jost 
function and solution are continuous in q = k, (cf. Ref. 3) 

limft(k,q) = ft, 
q~k 

(2.9) 

limlkqlt)=lkll). (2.10) 
q~k 

By taking the limit q_k in Eq. (2.8) we obtain 

Ikl r) = (1 + GOI TI)lkl t)oft. (2.11) 

We multiply both sides of this equation by VI and get 

V1lkll) = Tllkl t)oft. (2.12) 

This equality turns out to be very useful below. 

Multiplying Eq. (2.8) by VI and using Eq. (2.12), we 
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obtain 

V1lkqll) = T1Iqll)0+ Tllklt)o(k/q)l+! 

X [ft(k,q) - 1]. (2.13) 

Further we get some closed formulas for the Jost function 
from Eqs. (7) by taking q = k. We have 

ft = ft(k,k) = 1 + !1Tkft<kl - iVl I kl t )0' 

and therefore 

By using Eq. (2.12) we obtain from Eq. (2.14), 

(2.14) 

ft = 1 + !1Tk<kl iV,1 kl t) = 1 + !1Tk<kl! iVII kl). 
(2.15) 

We shall need the connection between <P I kl t) and 
<PI Vlkl t). From Eq. (2.11) we have 

Ikl t)/I- 1 = Ikl t)o + Go1Tllki t)o, 

(2.16) 

Therefore, 

<Plkl t) = <Plkl t)<1; + <PIGol V1lkl t). (2.17) 

The free "state" <Plkl t >0 is given explicitly by 

<Plklt)o= 2. (P/k)!, Imk>O. (2.18) 
1Tk p2 _ k 2 

By inserting this in Eq. (2.17) one easily obtains 

<PI V1lkl t) = (k 2 - p2)<Plkl t) + 2(1Tktl(p/k)lft, 
(2.19) 

which is the relation we wanted. 

The connection between the off-shell quantities, corre· 
sponding to the one of Eq. (2.19), can be obtained from Eqs. 
(2.8), (2.13), and (2.19), 

<PI Vllkql t) = (k 2 - p2)<Plkql t) 

+ 2(1Tqt1(P/q)Vl.k,q) 

_ (k 2 _ q2)/(P2 _ q2)]. (2.20) 

It is interesting to consider the limit of <Plkl t) for 
p- 00. This limit could be used for an alternative definition 
of ft (cf. Refs. 5 and 6). By using the fact that 
<rlkl t) = 0 (r- 1- I) as r-D, we obtain 

<PI Vllkl t> = (2/1T) 112i- 1 fOj1(Pr)Vk)<rlkl t)r dr 

=.c/- 2 i'''jl(X)VI(x/p)XI-IdX, p_oo. 
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In this way we find that 

limp-'<PI ~lklt)=O, [>->00 

when the potential is nonsingular, i.e., 

V (r) = 0 (r - a), a < 2, r~. 

It is easily seen from Eqs. (2.19) and (2.21) that 

(2.21) 

j,=~7Tk'+llimp2-'(plklt). (2.22) 
P--"-cc 

This may be compared with the usual definition ofJ,., 

J,. (7T12) 112 (2Ii) , (I !/(21 )!)lim(kr)' + \rlkl t). (2.23) 
r~O 

Similar equations hold for the off-shell Jost function and 
solution. The analog of Eq. (2.23) is (Ref. 3) 

J,.(k,q) = (7T/2)1I2(2IZ)' [l !/(21)! Jlim(qr)' + '(rlkql t). 
r~ 

(2.24) 

The off-shell analog ofEq. (2.22) follows by using Eq. (2.8). 
We have [cf. Eq. (2.21)] 

lim p2 - '<P I Go, Tt I ql t)o = limp - / <P I T, I ql 1)0 = 0, 
p-co p----+oo 

and so we obtain from (2.8), 

J,.(k,q) = !7Tq' + I lim p2 -'<Plkql t). (2.25) 

This expression can also be derived with the help of Eq. 
(2.20). 

It is interesting to note that Eq. (2.25) is obtained in a 
different way, by using Eq. (2.24) in the expression 

<Plkql 1) = (2I7T)1I2i-tlOO Mpr)(rlkql 1)r' dr, (2.26) 

and applying the equality 

i 00 • ( ) ,- A d 1122 - A r (1 + 11 - !.-l ) i, x x x = 7T , 
o r (~ + ~l + ~.-l ) 

O<Re.-l <i + 2. (2.27) 

On the other hand, we shall now derive Eq. (2.24) from 
Eq. (2.25). We have 

(rlkql i) = (2/7T)1I2 i'lim ('''It(pr)<Plkql t)e - EPp2 dp, 
£10 )0 

(2.28) 

where e - £p has been inserted to guarantee the convergence 
of the integral. It turns out that, when r goes to zero, 
<Plkql i) may be replaced by its asymptotic value, which is 
given by Eq. (2.25). Then we obtain from (2.28), using the 
new variable of integration x = pr, 

lim(qrY+ '(rlkql i) =j,(k,q)(2I7T)312 it 
r~O 

X lim (00 Mx)x' e - Exlr dx. (2.29) 
EIO )0 
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In order to evaluate the integral here, we note that 

l'" e - ax "'l (f3x)x" dx 

= (a 2 +/32)- (1/2)-(112»' 

X r (l + f-l + V)P,~ !l(a(a2 + 13't' 1/2)), 

(2.30) 

Here P ,-:-1'<;) is the Legendre function of the first kind "on 
the cut"; - 1 < ~ < 1. Its value for ~ = 0 is given by 

r(1 + f-l)P v-IL(O) = 2FI ( - v,v + 1;,u + I;!) 

r(1 + !f-lW(1 +!f-l) 

By using this expression we get 

lim (00 e - EX J (x)XV dx = 2V r (! + !f-l + !v) 
E!O)O IL r(!+!f-l-!v)' 

Re(1 + f-l + v) > 0, 

and so 

lim ('" e - E),(X)X' dx = 7T 1122' - Ir (/ + !) 
nO )0 

= 7T2 - ,- '(21)!/1!. 

(2.31 ) 

(2.32) 

By inserting this in Eg. (2.29) wejust obtain Eg. (2.24). 

We note that the above limiting procedures constitute 
in fact a generalization of the well-known Riemann-Lebes­
gue lemma, i.e., 

lim ff(x)e iXY dx = 0, 
y- ± 00 

where f is any summable function. 

3. THE COULOMB CASE 

Some of the expressions derived in Sec. 2 do not hold 
when the potential has a Coulomb range. Especially Eqs. 
(2.9), (2.lO), (2.14), and (2.15) need modification. In this 
section we shall derive the analogs of these equations for the 
case ofthe pure Coulomb potential. Further we shall develop 
some explicit expressions, in terms of hypergeometric func­
tions, for the particular case when 1= O. In Sec. 4 we shall 
derive interesting formulas for the case when the potential is 
the sum of the Coulomb potential and a short-range poten­
tial, by using the results obtained in Secs. 2 and 3. 

In the first place we note that the important equations 
(2.11) and (2.12) do hold for the Coulomb case, i.e., 

Ikl t)c = (1 + Go, Tcl)lkl t)ofc" (3.1) 

and so 

(3.2) 

We shall prove Eg. (3.1) in an independent way. To start 
with, we observe that the existence of the quantity 
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GOI Tcdkl t)o = Gel Vcllkl t)o is easily confirmed by using 

<rl Gel I r') = -11Tk <r> Ikl t)cc<kl- Ir <). (3.3) 

One can also show in this way that Go[Tellkl!)o is not de­
fined, i.e., that it contains a divergent integral. 

In order to prove Eq. (3.1), we note that its right-hand 
side equals some solution !/J of the equation (k 2 - Hel)!/J = 0 
(in the coordinate representation). Further, by using Eq. 
(3.3) and by considering the asymptotic behavior (r----.. 00) of 
the right-hand side of (3.1), we find that it must be propor­
tional to Ikl t )c' The next step is to consider the behavior for 
small r. By again using (3.3) one has 

<riGel Vcdkl t)o = o (lnr) , 1 = 0, r----..o, 

= 0 (r - ), i> 0, r----..O. (3.4) 

Therefore, 

liml+ 1 <rIGOl Tel lklt)0=0, 1=0,1,. ... 
r-.o 

By using Eq. (2.23) the proof ofEq. (3.1) now follows easily. 

In a previous paper2 we have derived the Coulomb ana­
log of Eq. (2.9), by using an explicit expression for lel (k,q). 
The following equality holds, 

limw.t;Ak,q) =ic[, k>O. (3.5) 
q .k 

Here 

(q-kr 
e1Ty/2 leO 

Imq>O. (3.6) 
w- q + k r (1 + iy) leO (k,q) 

, 

The Coulomb analog ofEq. (2.10) is now easily obtained by 
using Eqs. (2.8), (3.1), and (3.5), 

limwlkql t)c = Ikl t)c, k > O. (3.7) 
q~k 

It is interesting to note that we are now able to prove the 
validity of two conjectures from a preceding paper.' The first 
one, Eq. (40.1), is in fact just (3.7). The second one, Eq. 
(40.k), is easily proved by using Eqs. (40.h)-( 40.j) of Ref. 1 
and Eq. (2.8). 

We note that Eqs. (2.7a) and (2.7d) are valid in the 
Coulomb case, whereas Eqs. (2.7b) and (2.7c) are not. By 
using Eqs. (2.7a) and (3.5) we have obtained the interesting 
equality, 

Obviously, this can be considered as a Coulomb analog of the 
short-range potential formulas given in Eq. (2.14). 

It would be interesting to have available explicit expres­
sions for the above quantities. Only a few such formulas are 
known. The quantities <rlkl t)c andlcA:k) for I = 0,1,2,.·· 
have been known for a long time. We have obtained a num­
ber of interesting analytic expressions for IcA:k,q), 
1 = 0,1,2,.·· (see Ref. 7). Further, <PI TellP') is known in 
closed form for 1 = 0' and for 1 = 1 only.9 Below we shall 
derive analytic expressions for <Plkl t)c' <Plkql t)c' and for 
<P I Tel I ql t )0' in the case 1 = 0 only. 
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Before we start with the derivations we would like to 
make some remarks on the interrelationships between the 
above quantities. It is importanttonotethat (PI Tel Iql t >ocan 
be considered as the general object from which all other 
quantities can be obtained in a simple way. This is true as 
well for Coulomblike potentials, and of course also for short­
range potentials. Indeed, by taking q = k we have 
(P I Tel I kl t > 0 from which (P I kl t ) c follows with the help of 
Eqs. (2.12) and (2.19). Once (P I kl t ) c is known, (P Ikql t ) c is 
obtained by using Eq. (2.8). The ordinary off-shell Coulomb 
T matrix (P I Tel IP') follows from (p I Tel I ql t ) 0 by noting 
that 

Furthermore,icl (k,q) can be obtained from (P I kql t ) c and.t;'l 
from (Plkl t) c by using Eqs. (2.25) and (2.22), respectively. 
Finally we note that application of the Coulombian asymp­
toticstates(seeRef. 10)to (pITcllql t>oand (PITcllP') yields 
icl(k,q) and (Plkl + )c' respectively. Since, therefore, 
(PI Tcllql t >0 appears to be the object of central important, 
we are interested in the general structure of an analytic ex­
pression for this quantity. 

For the moment we restrict ourselves to the case I = 0 
and we suppress I. Let us first recall the expression for 
<PI Tclp') given in Ref. 8, 

<P I Tc Ip') = ik (1Tpp')-' [Fi/aa') + Fi/(aa't') 

(3.10) 

Here 

and 

a-(P - k), a'-(P' - k). 
(P + k ) (P' + k ) 

By using a well-known integral representation for the hyper­
geometric function, 

Fi/Z) = iy f t iy - 1(1 - tzt' dt, 

we are able to evaluate 

(P I Tc Iqt)o = f" (p I Tc Ip') (P'lqt ).p'2 dp', 

where [cf. Eq. (2.18)] 

<Plqt)o = 2(1Tqt'(p2 - q2t', Imq> O. 

After a number of manipulations we arrive at 

with 

H. van Haeringen 
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Equation (3.9) provides us with a check on this result. It can 
be seen by inspection that we have indeed 

lim«P1 Tclqt>o + (PI Tcl( - q)t>o) 
q._p' 

= 2i(P1 Tclp'), (3.13) 

note that b-'>1Ib when q is replaced by - q. 

Further, we clearly have from (3.12), 

Jim (p I Tc I qt >0 = (P I Tc I k T >0 
q ·k 

= 2(rrpt' [F,/a) - F,/1Ia)]. (3.14) 

By using Eq. (3.1) one easily obtains 

(PI Vclk t>c = 2(1TPt1c[F'r(a) - Fir(1Ia)] , (3.15) 

and with the help of Eq. (2.19), 

(Plk t>c = 2(1Tp)-1(P2 - k 2t'fc[plk - Fir(a) + Fir(1Ia)]. 
(3.16) 

Finally we note that (Plkqt>c can now easily be given. We 
only need to insert the known expressions for the terms on 
the right-hand side ofEq. (2.8). In particular, we have 

fc(k,q) = b - '1'. (3.17) 

Let us, for completeness, write out this expression for the 
Hankel transform of the Coulomb off-shell Jost solution for 
1=0, 

(PlkqT)c = 2 + 2k 
1Tq(P2 _ q2) 1Tpq(P2 _ k 2) 

x [Fi/ab) - Fir(b la) - plk + b - ir 

(3.18) 

By using Eq. (2.13) or Eq. (2.20) we have 

(P I Vcl kqt>c = 2k (1Tpqt l [Fi/b la) - Fir(ab) 

By taking here the limit q-'>k we get, with w = fcbir, 

limw(p I Vc I kq t > c = (P I Vc I k t > c' 
q~k 

Such a relation holds in fact for alII. Indeed, with the help of 
Egs. (2.19), (2.20), (3.5), and (3.7) the proof of 

limfcb 'l'(P I Veil kql j>c = (P I VC/I kl t>c, 
q·~k 

1=0,1,2, .. ·, (3.20) 

is easily obtained. 

A final remark concerning the generalization of the 
1= o expression for (P I Tclqt>o to general values of lis appro­
priate here. In view of Eq. (3.12) it can be expected that 
(PI Tellql t>o where I = 0,1,2,.··, can be expressed in terms of 
simple functions and the hypergeometric function Fir with 
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exactly the same arguments as in (3.12), notably ab, b la, a, 
and 1Ia. 

4. THE COULOMBLIKE POTENTIAL CASE 

In this section we assume that the potential is the sum of 
the Coulomb potential and a short-range potential, 
V = Vc + Vs' We shall discuss the necessary modifications 
of the equations given in Sec. 2 by using the appropriate 
results obtained in Sec. 3. In particular, we will derive the 
analogs of Eqs. (2.9), (2.10), and (2.14). 

We shall use the well-known two-potential formalism. 
The T operator corresponding to V = Vc + Vs is given by 

T = Tc + (l + Tpo)tcs(l + GoTJ, 

where tcs is the solution of 

fcs = Vs + Vs Gc fcs' 

(4.1) 

(4.2) 

The partial-wave analogs of these equations have exactly the 
same form. For the partial-wave "outgoing" scattering state 
I kl + > the following equation can be obtained, 

(4.3) 

In order to derive relations for the "Jost states," we use 
Eqs. (2.11) and (2.12). These are also valid for a Coulomb like 
potential. We insert (4.1) in (2.11), 

Ikl t)f,- 1= (1 + GOI TI)lkl t)o, 

and obtain 

(4.4) 

Further, by inserting (4.1) in (2.12), 

Vllkl t)fl- I = Tllkl t)o, 

we get 

Vllkl t>fl- 1= Vellkl t)Jcl l + G Oll Gel tcs/lkl t>Jcl I
• 

(4.5) 

We are now going to derive a connection between the 
Jost functionJ; and the Coulomb Jost functionfel' To this 
end we write Eq. (4.3) in the coordinate representation. In 
the resulting equation we insert the equality [cf. Eq. (3.3)] 

(rl Gel I r') = - !1Tk (r < Ikl + >c c(kl! Ir ». 

We note that c(kl L Itcs/lkl + )c is a well-defined quantity 
since tcsl is a short-range operator. By using 

(rltcs/lkl+)c=O(rl-U), a<2, r-'>0, 

we obtain from Eq. (4.3) 

(rlkl + > = (rlkl + )c - !1Tk (rlkl + >c 

The Jost functions can be obtained from the scattering states 
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by considering their small-r behavior. We have (e.g., Refs. S 
and 6) 

limr - 1 (rlkl + ) = 11- 1 (2hr)II2(2ik YI 1/(21 + I)!. (4.6) 
r --0 

With the help of this relation one obtains 

11- I = Icll - ~1T"klcll /kl! I tcsll kl + )c, 

as can be seen by inspection. We rewrite this equation in the 
more convenient form, 

(4.7a) 

If we take here Vc---"O we get back one of the expressions of 
Eq. (2.14), since in this case tcsrTsl andfcrl. Just as in 
(2.14) there are three different equivalent expressions, 

namely 

(4.7b) 

(4.7c) 

(4.7d) 

These are easily derived with the help ofEqs. (4.1) and (4.3). 

In order to derive the analog ofEq. (2.1S), we first mul­
tiply both sides ofEq. (4.4) by VsI' This yields 

V,llkl t)/I-1 = tcsllkl t)Jcl l. (4.8) 

By inserting this equation in (4.7d) we get 

I cl l It = 1 + ~1T"k c (kl - IVs' I kl t) 

(4.9) 

Obviously this is the two-potential analog of Eq. (2.1S). 

It is interesting to consider the analog of Eq. (3.8), i.e., 

1,- I = lim(liJ-1 - ~1T"k <kl - I V, I ql t )0), k> O. 
q~k 

(4.10) 

In order to prove this equation, we first note that one has 
from Eqs. (4.1)-(4.3), 

<kl - I VI = /kl - I Vcl + c<kl - I tcsl (1 + GOI Tel)' 
(4.11) 

We insert this expression in (4.10) and use 

(4.12) 

By applying finally Eqs. (3.8) and (4.7d) the proof of Eq. 
(4.10) is completed. 

Now we turn to the off-shell Jost function. In Eq. (2.7a) 
the following general formula, 

ft(k,q) = 1 + !1T"q(qlk)lft<kl- I V,lql t)o, (4.13) 
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has been given.4 This equation is also valid for a Coulomblike 
potential. By inserting Eq. (4.11) in (4.13), and by using 
(4.13) for the pure Coulomb case, we obtain 

[(,(k,q) - 1]/,-1 = IIAk,q) -1]/CI 1 + ~1T"q(qlk)' 

(4.14) 

Herewith we have obtained a useful relation between the 
Coulomb off-shell Jost function and the off-shell Jost func­
tion for a Coulomblike potential. Indeed, from Eq. (4.14) 
one obtains, by using Eqs. (4.12) and (3.S), the analog of the 
pure Coulomb formula (3.S), 

limliJft(k,q) = ft, k> O. (4.1S) 
q~k 

Here liJ is given by Eq. (3.6). 

Finally, we are going to prove 

limliJI kql t) = Ikl t), k > O. (4.16) 
q~k 

This is just the Coulomb like analog of the pure Coulomb 
formula (3.7). From Eqs. (2.8) and (2.11) we obtain 

Ikql t) ---.. Ikl t) 11- I ft(k,q). 
q~k 

Application of Eq. (4.1S) then completes the proof of Eq. 
(4.16). 

So we see that the singular behavior of the off-shell Jost 
function and of the off-shell Jost state in q = k is just the 
same as for the pure Coulomb potential. This result is as 
might be expected, since this singularity is generated by the 
asymptotic part of the potential only. 
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