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We obtain from the off-shell Coulomb unitarity relation a closed expression for "1,1"~ 0 (21 + I)PI (x) 
X QI ;1'( y) QI - ;1'(z), and we consider some related series of products of Legendre functions. 

PACS numbers: 02.30.Lt, 02.30.Gp, 03.65.Nk 

In this paper we shall consider the Coulomb unitarity 
relation 1-4 and derive from this relation a closed expression 
for an infinite series of products of three Legendre functions, 
PI' Q/1', and QI -;1' [see Eq. (12)]. By taking the limit y-O 
we obtain agreement with an expression5 for the correspond
ing series, which exists in the literature. However, our ex
pression has a much simpler form, which means that we have 
obtained a substantial reduction of the expression given in. s 

After the derivation of our main result, Eq. (12), we shall 
briefly consider some related series of products of Legendre 
functions [see Eqs. (14)-(25)]. 

The unitarity relation, or generalized optical theorem, 
or Low equation, in quantum-mechanical scattering theory 
establishes a simple relation between the imaginary part of 
the off-shell T matrix and its half-off-shell elements. 1.2 Sup
pressing the energy, E = k 2 + 17], 7]iO, we have 

(pi T - Ttlp') = - i1Tk f (pI T Ik) (kl Ttlp') dk,(I) 

where the integration is over the unit sphere. Equation (1) is 
valid when the potential associated with Thas a short range. 
However, for the Coulomb potential Ve Eq. (1) has to be 
modified because the half-shell limit of the off-shell Cou
lomb T matrix Tc does not exist. Instead we have4 

(p I Te - Tc tip') = - i1Tk f (p I Te \ k 00) (k 00 I Te tip') dk 

= - i1Tk f (p IVe \k +)e e (k + IVe \p') dk, (2) 

where Ikoo) is the so-called Coulomb ian asymptotic state 
and I k + ) c is the Coulomb scattering state with energy 
(k + iEf, E iO. The left-hand side ofEq. (2) is known in closed 
form (Ref. 4). We rewrite the right-hand side by inserting 

(p \ Vc \k + )c = I (41T)-1(21 + I)PI(p·k)(P \ Vel \ kl + )c' 
I~O 

(3) 

and using the orthogonality relation 

f PI(p·k)PI·(p'·k) dk = 41T(21 + 1)- IPI(p·p')Oll" (4) 

In Eq. (3), Ikl + ) c is the partial-wave Coulomb scattering 
state. Denoting (p2 + k 2)/(2pk ) by y and assumingp > k, we 
have4 

where yis Sommerfeld's parameter, which is real (k > 0). It is 
important to note that QI ;1'( y) is not real-analytic: For the 
complex conjugate of both members ofEq. (5) we obtain 

(pIVc \kl+): =2Y(1Tp)-le -(3I2(1T1'QI -;1'(y). (6) 

In the above indicated way we obtain from Eqs. (2)-(6), 
00 I (21 + I)PI(x)Q/1'(y)QI- ;1'(z) 
I~O 

- [T(1 + iy)T(1 - iy)/2iy(a+a_)1/2] 

X(y;1' _ Y - ;1') 

= - 1T sin (ylnY)/(a+a_) 1/2sinh1TY. 

Here x = p.p', z = (p'2 + k 2)/(2p'k ),p' > k, 

a~ =yz_X±(y2_1)1/2(Z2_1)I12, 

Y = (a+ 1/2 _ a_ 1/2)/(a+ 1/2 + a _ 112). 

For convenience we introduce the quantity W, 

W = W(x,y,z) = x 2 + y2 + Z2 - 2xyz - 1. 

Then we have a +a _ = W;;;,O, 

y2 = (yz _ x - W I/2 )/(yz - x + W I12 ), 

so that Eq. (7) can be rewritten as 

I (21 + 1 )PI (X)QI ;1'( y)QI - ;1'(z) 
I~O 

= - 1T sin (~y In Y 2)/ W 1/2 sinh1TY. 

(7) 

(8) 

(9) 

(10) 

(11 ) 

( 12) 

By analytic continuation it follows that Eq. (12) is valid for 
complex x, y, z, and y. The series in Eq. (12) is convergent if 
Rex > 0, Rey > 0, Rez> 0, and 

IX+(X2_1)1/21 < ly+(y2_1)1/21·lz+(Z2_1)1/21. 
( 13) 

When Re x < 0, one should replace x by - x in Eq. ( 13), and 
similarly for y and z. It may be noted that 

P
I

( _ y) = ( _ 1)lp,(y), 

Q/1'( - z) = ( - 1)' + IQ/1'(Z). 

Now we are going to consider the more general 
expression 

= I (21 + 1)P,(x l )···p,(xm )Q,(ZI )"'Q,(z,,) 
,~O 

(14) 
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(cf. Ref. 5) for n, m = 0,1,2,3, Xi E C, Yi E C\ [ - 1,1]. When 
Re Xi> 0, Re Zj > 0, this series is convergent if 

IT IXi + (x/ - 1)1/21 < fI IZj + (z/ - 1)112 1. (15) 
i=1 j=1 

Let us first consider F 12. By taking the limit for y-+O in Eq. 
(12) we obtain 

F 12(x;y,z) = f (2/ + 1 )PI (X)QI (Y)QI (z) 
{=o 

W l/2 
_ I W - 1/21 yz - X + 
- 2 n 

yz-x - W I/2 

It is interesting to note that 

F ( ) 1 J(y A A)_I( AI A)-l d A 
12 x;y,z = - - p.q z - p .q q, 

411" 

(16) 

where p.p' = X and the integration is over the unit sphere. In 
Ref. 5 an expression has been given for Fdx;z,z). Our result 
given by Eq. (16) means a considerable reduction of that ex
pression. Indeed, in the notation of Ref. 5 we have 
d=z2-1 +t 2, 2t 2 = l-y,andEq.(16)gives 

1 (t + d 112)2 
Fd y;Z,z) = 4td 1/2 In t _ d 1/2 ' 

whereas in Ref. 5 the following result is given, 

1 
F 12(y;z,z) = 4td 1/2 

(17) 

X In [1 + t [z + 2 + 2t 2/(Z - I)]d - 1/2 + 2t 2/(Z - 1)]. 
1 + t [z - 2 + 2t 2/(z + I)]d -112 - 2/2/(z + 1) 

To demonstrate the equivalence of this result and that in Eq. 
( 17) is not completely trivial. It can be done by dividing out 
the common factor (1 + tzd - 1/2)(Z2 - I) -I from the numer
ator and the denominator of the fraction which forms the 
argument of the logarithm. By this procedure Eq. (17) is 
retrieved. 

We shall briefly consider some other interesting par
ticular cases of the general function F mn . By taking x = 1 in 
Eq. (16) we obtain the well-known result 

_I (Y-IZ+l) F02(Y,z) = ~(y - z) In ---- . 
y+l z-1 

Other well-known formulas are6 

Fzdx,y;z) = W- I
(2, 

Flb;z) = (z _ y)-I, 

FoI(z) = (z - I)-I. 

Eq. (20) is called Heine's formula. 

(18) 

(19) 

(20) 

(21) 

When n = 0 we shall restrict x, y, and z in F m 0 to the 
interval [ - 1,1]. According to Ref. 6, p. 307 we have 

F {O if W>O} 
3O(X,y,z) = 211"-1( _ W)-112 if W <0 . 

Furthermore, we have [cf. Eq. (4)] 

F20(x,y) = 28(y - x), 

FiO(X) = 28( 1 - x), 

where 8 is Dirac's delta distribution. 

(22) 

(23) 

(24) 

Finally we shall briefly consider F03 ' In virtue of Eq. 
(16) we have 
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F03(P,y,z) = ! (2/ + I)QI(P)QI(Y)QI(z) 
/=0 

1 fl dx QO ="2 _ IP _ X I~O (2/ + 1 JP/(p)Q/(Y)QI(Z) 

1 JI W -1/2 yz - X + W II2 

=- In dx. 
4 _ I P - X yz - X - W 112 

Putting a = (y2 - 1) 112(zZ - 1) 1/2, V = arcosh((yz - x)la), 
v ± = arcosh((yz ± I)/a) we get W ll2 = a sinhv and 

1v+ vdv 
F03(P'y,z) = (1I2)a . 

v_ cosh v - (yz - p)/a 
(25) 

According to formula 2.478.7 of Ref. 7 we have 

J xdx 

cosh2x - cos2t 

=_.1_ [L (u + t) -L (u - t) - 2L(t)], (26) 
2 sm2t 

where u = arctan(tanhx cott) and Lis Lobachevski's func
tion, defined by 

L (x) = - f In(cost) dt. (27) 

This implies that F03 cannot be expressed in terms of elemen
tary functions. 

By using the series representation 

L (x) = - x In2 + (112) f (- Wn- 2 sin2nx, (28) 
n=l 

the right member ofEq. (26) can be rewritten as 

I QO --.- I. (-I)nn- 2 sin2ntcos2nu. (29) 
4 sm2t n=O 

We point out that on p. 377 of Ref. 6, Eq. (56.8.1), a 
closed formula is given for the series 

! (2/ + IJP/(x)PI m(yJP/ - m(z), (30) 
1=0 

where mEN and x,y,z E [ - 1,1). 
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