12,244 research outputs found

    Dysregulation of microtubule stability impairs morphofunctional connectivity in primary neuronal networks

    Get PDF
    Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encodingMAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window

    Schooleffectiviteitsonderzoek

    Get PDF

    Methodologie & evaluatie

    Get PDF

    Study protocol ROTATE-trial:anterior cruciate ligament rupture, the influence of a treatment algorithm and shared decision making on clinical outcome- a cluster randomized controlled trial

    Get PDF
    BACKGROUND: Anterior cruciate ligament (ACL) rupture is a very common knee injury in the sport active population. There is much debate on which treatment (operative or non-operative) is best for the individual patient. In order to give a more personalized recommendation we aim to evaluate the effectiveness and cost-effectiveness of a treatment algorithm for patients with a complete primary ACL rupture. METHODS: The ROTATE-trial is a multicenter, open-labeled cluster randomized controlled trial with superiority design. Randomization will take place on hospital level (n = 10). Patients must meet all the following criteria: aged 18 year or older, with a complete primary ACL rupture (confirmed by MRI and physical examination) and maximum of 6 weeks of non-operative treatment. Exclusion criteria consists of multi ligament trauma indicated for surgical intervention, presence of another disorder that affects the activity level of the lower limb, pregnancy, and insufficient command of the Dutch language. The intervention to be investigated will be an adjusted treatment decision strategy, including an advice from our treatment algorithm. Patient reported outcomes will be conducted at baseline, 3, 6, 12 and 24 months. Physical examination of the knee at baseline, 12 and 24 months. Primary outcome will be function of the knee measured by the International Knee Documentation Committee (IKDC) questionnaire. Secondary outcomes are, among others, the Tegner activity score, the Knee injury and Osteoarthritis Outcome Score (KOOS) and the 9-item Shared Decision Making Questionnaire (SDM-Q-9). Healthcare use, productivity and satisfaction with ((non-)operative) care are also measured by means of questionnaires. In total 230 patients will be included, resulting in 23 patients per hospital. DISCUSSION: The ROTATE study aims to evaluate the effectiveness and cost-effectiveness of a treatment algorithm for patients with a complete primary ACL rupture compared to current used treatment strategy. Using a treatment algorithm might give the much-wanted personalized treatment recommendation. TRIAL REGISTRATION: This study is approved by the Medical Research Ethics Committee of Erasmus Medical Center in Rotterdam and prospectively registered at the Dutch Trial Registry on May 13th, 2020. Registration number: NL8637.</p

    A basic course in network analysis. I. Content, results, instruction

    Get PDF
    An introductory course to electric network analysis is described. Both time domain analysis (differential equations, impulse response and convolution integral) and frequency domain analysis (harmonic eigenfunctions and system transfer function) are covered by this course. It is intended that students see these techniques within a global framework. This overview must enable the student to make a motivated choice for one of the methods in problems he has to solve. The passing rates of the course are quite poor. Students show a lack of insight. The presentation of the subject matter, the tutoring of students' exercises and the effort of students in connection with the examination system are discussed. A structural scheme of the subject matter, containing the methods of the course in their relations, is presented. It is concluded that the problems students have to solve as exercises require further analysi

    Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression

    Get PDF
    Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from in vivo and in vitro promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for ortho-chlorophenols, while meta-chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the cprK genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nuclecitide changes from the optimal dehalobox sequence (TTAAT-N-4-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds

    Determinants of soil organic matter chemistry in maritime temperate forest ecosystems

    Get PDF
    While the influence of climate, vegetation, management and abiotic site factors on total carbon budgets and turn-over is intensively assessed, the influences of these ecosystem properties on the chemical complexity of soil organic matter (SOM) remains poorly understood. This study addresses the chemical composition of NaOH-extracted SOM from maritime temperate forest sites in Flanders (Belgium) by pyrolysis-GC/MS. The studied forests were chosen based on dominant tree species (Pinus sylvestris, Fagus sylvatica, Quercus robur and Populus spp.), soil texture and soil-moisture conditions. Differences in extractable-SOM pyrolysis products were correlated to site variables including dominant tree species, management of the woody biomass, site history, soil properties, total carbon stocks and indicators for microbial activity. Despite of a typical high intercorrelation between these site variables, the influence of the dominant tree species is prominent. The extractable-SOM composition is strongly correlated to litter quality and available nutrients. In nutrient-poor forests with low litter quality, the decomposition of relatively recalcitrant compounds (i.e. short and mid-chain alkanes/alkenes and aromatic compounds) appears hampered, causing a relative accumulation of these compounds in the soil. However, if substrate quality is favorable, no accumulations of recalcitrant compounds were observed, not even under high soil-moisture conditions. Former heathland vegetation still had a profound influence on extractable-SOM chemistry of young pine forests after a minimum of 60 year

    The "quasi-stable" lipid shelled microbubble in response to consecutive ultrasound pulses

    Get PDF
    Controlled microbubble stability upon exposure to consecutive ultrasound exposures is important for increased sensitivity in contrast enhanced ultrasound diagnostics and manipulation for localised drug release. An ultra high-speed camera operating at 13 × 10 6 frames per second is used to show that a physical instability in the encapsulating lipid shell can be promoted by ultrasound, causing loss of shell material that depends on the characteristics of the microbubble motion. This leads to well characterized disruption, and microbubbles follow an irreversible trajectory through the resonance peak, causing the evolution of specific microbubble spectral signatures. © 2012 American Institute of Physics
    • …
    corecore