1,133 research outputs found

    Conditions for nonexistence of static or stationary, Einstein-Maxwell, non-inheriting black-holes

    Full text link
    We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein-Maxwell space-times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.Comment: 19 pages, to appear in GER

    Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri

    Get PDF
    The structure of polyhomogeneous space-times (i.e., space-times with metrics which admit an expansion in terms of rjlogirr^{-j}\log^i r) constructed by a Bondi--Sachs type method is analysed. The occurrence of some log terms in an asymptotic expansion of the metric is related to the non--vanishing of the Weyl tensor at Scri. Various quantities of interest, including the Bondi mass loss formula, the peeling--off of the Riemann tensor and the Newman--Penrose constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9

    On the existence of Killing vector fields

    Get PDF
    In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.Comment: 9 pages, no figure, to appear in Class. Quant. Gra

    Einstein equations in the null quasi-spherical gauge III: numerical algorithms

    Get PDF
    We describe numerical techniques used in the construction of our 4th order evolution for the full Einstein equations, and assess the accuracy of representative solutions. The code is based on a null gauge with a quasi-spherical radial coordinate, and simulates the interaction of a single black hole with gravitational radiation. Techniques used include spherical harmonic representations, convolution spline interpolation and filtering, and an RK4 "method of lines" evolution. For sample initial data of "intermediate" size (gravitational field with 19% of the black hole mass), the code is accurate to 1 part in 10^5, until null time z=55 when the coordinate condition breaks down.Comment: Latex, 38 pages, 29 figures (360Kb compressed

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page

    Quantization of Gauge Field Theories on the Front-Form without Gauge Constraints I : The Abelian Case

    Full text link
    Recently, we have proposed a new front-form quantization which treated both the x+x^{+} and the xx^{-} coordinates as front-form 'times.' This quantization was found to preserve parity explicitly. In this paper we extend this construction to local Abelian gauge fields . We quantize this theory using a method proposed originally by Faddeev and Jackiw . We emphasize here the feature that quantizing along both x+x^+ and xx^- , gauge theories does not require extra constraints (also known as 'gauge conditions') to determine the solution uniquely.Comment: 18 pages, phyzz

    Ghost points in inverse scattering constructions of stationary Einstein metrics

    Full text link
    We prove a removable singularities theorem for stationary Einstein equations, with useful implications for constructions of stationary solutions using soliton methods

    Zur Klassifizierung mehrparametriger Dämpfungsmodelle

    Get PDF
    Vier Dämpfungsmodelle wurden in Nolte und Müller zum Hagen (2005) hinsichtlich ihrer mathematischen Struktur beschriebenen: Das Maxwell-Modell, das Jeffreys-Modell, das Kelvin-Voigt-Modell sowie das Poynting-Thomson-Modell. Die Diskussion der Modelle erfolgte an den partiellen Differentialgleichungen in der Verschiebung. Weitere physikalische Untersuchungen fanden statt. Es hat sich, dass zwei der partiellen Differentialgleichungen (Dämpfungsmodell nach Maxwell und Poynting-Thomson) rein hyperbolisch sind und die zwei anderen partiellen Differentialgleichungen vom parabolischen-hyperbolischen Typ sind. Diese Erkenntnis wird in dieser Arbeit auf mehrparametrige Dämpfungsmodelle übertragen

    Static self-gravitating many-body systems in Einstein gravity

    Full text link
    We consider the problem of constructing static, elastic, many-body systems in Einstein gravity. The solutions constructed are deformations of static many-body configurations in Newtonian gravity. No symmetry assumptions are made.Comment: 15 page
    corecore