83 research outputs found

    Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of <it>Plasmodium </it>with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of <it>Plasmodium vivax </it>in a wild insecticide-resistant mysorensis strain of <it>Anopheles stephensi</it>, a major vector of vivax malaria in south-eastern Iran. The study subsequently demonstrates that host-parasite sugar binding interactions are critical to the development of this parasite in the salivary glands of its mosquito host. The identity of the receptors or sugars involved was revealed by a receptor "pre-saturation" strategy in which sugars fed to the mosquitoes inhibited normal host-parasite interactions.</p> <p>Methods</p> <p><it>Anopheles stephensi </it>mysorensis mosquitoes were artificially infected with <it>P. vivax </it>by feeding on the blood of gametocytaemic volunteers reporting to local malaria clinics in the Sistan-Baluchistan province of south-eastern Iran. In order to determine the inhibitory effect of carbohydrates on sporogonic development, vector mosquitoes were allowed to ingest blood meals containing both gametocytes and added carbohydrates. The carbohydrates tested were GlcNAc, GalNAc, arabinose, fucose, mannose, lactose, glucose and galactose. Sporogonic development was assessed by survival of the parasite at both the oocyst and sporozoite stages.</p> <p>Results</p> <p>Oocyst development was observed among nearly 6% of the fed control mosquitoes but the overall number of mosquitoes exhibiting sporozoite invasion of the salivary glands was 47.5% lower than the number supporting oocysts in their midgut. Of the tested carbohydrates, only arabinose and fucose slightly perturbed the development of <it>P. vivax </it>oocysts at the basal side of the mosquito midgut, and the remaining sugars caused no reductions in oocyst development. Strikingly however, sporozoites were completely absent from the salivary glands of mosquitoes treated with mannose, GalNAc, and lactose.</p> <p>Conclusion</p> <p>The study indicates that <it>An. stephensi </it>in southern Iran has the potential to survive long enough to be re-infected and transmit vivax malaria several times, based on the average adult female longevity (about 30 days) and its gonotrophic cycle (2–3 days) during the malaria transmission season. Certain sugar binding interactions are important for the development of <it>P. vivax </it>sporozoites, and this information may be instrumental for the development of transmission blocking strategies.</p

    A validated stability-indicating HPLC method for determination of varenicline in its bulk and tablets

    Get PDF
    A simple, sensitive and accurate stability-indicating HPLC method has been developed and validated for determination of varenicline (VRC) in its bulk form and pharmaceutical tablets. Chromatographic separation was achieved on a Zorbax Eclipse XDB-C8 column (150 mm × 4.6 mm i.d., particle size 5 μm, maintained at ambient temperature) by a mobile phase consisted of acetonitrile and 50 mM potassium dihydrogen phosphate buffer (10:90, v/v) with apparent pH of 3.5 ± 0.1 and a flow rate of 1.0 ml/min. The detection wavelength was set at 235 nm. VRC was subjected to different accelerated stress conditions. The degradation products, when any, were well resolved from the pure drug with significantly different retention time values. The method was linear (r = 0.9998) at a concentration range of 2 - 14 μg/ml. The limit of detection and limit of quantitation were 0.38 and 1.11 μg/ml, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 2%. The accuracy of the method was proved; the mean recovery of VRC was 100.10 ± 1.08%. The proposed method has high throughput as the analysis involved short run-time (~ 6 min). The method met the ICH/FDA regulatory requirements. The proposed method was successfully applied for the determination of VRC in bulk and tablets with acceptable accuracy and precisions; the label claim percentages were 99.65 ± 0.32%. The results demonstrated that the method would have a great value when applied in quality control and stability studies for VRC

    Information-theoretic principle entails orthomodularity of a lattice

    Full text link
    Quantum logical axiomatic systems for quantum theory usually include a postulate that a lattice under consideration is orthomodular. We propose a derivation of orthomodularity from an information-theoretic axiom. This provides conceptual clarity and removes a long-standing puzzle about the meaning of orthomodularity.Comment: Version prior to published, with slight modification

    Anopheles Gambiae PRS1 Modulates Plasmodium Development at Both Midgut and Salivary Gland Steps

    Get PDF
    Background: Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we have studied one of the genes, PRS1 (Plasmodium responsive salivary 1), whose expression was upregulated in infected glands, using immunolocalization and functional inactivation approaches. Methodology/Principal Findings: PRS1 belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat motifs of uncharacterized function. We show that PRS1 is induced in response to Plasmodium, not only in the salivary glands but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore, this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures. Importantly, PRS1 knockdown during the onset of midgut and salivary gland invasion demonstrates that PRS1 acts as an agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in both tissues. Conclusions/Significance: While providing insights into potential functions of DM9 proteins, our results reveal that PRS1 likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the specific Anopheles/P. falciparum coevolutionary history

    Next-Generation Phylogeography: A Targeted Approach for Multilocus Sequencing of Non-Model Organisms

    Get PDF
    The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers

    Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins

    Get PDF
    SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites

    Naturally Occurring Triggers that Induce Apoptosis-Like Programmed Cell Death in Plasmodium berghei Ookinetes

    Get PDF
    Several protozoan parasites have been shown to undergo a form of programmed cell death that exhibits morphological features associated with metazoan apoptosis. These include the rodent malaria parasite, Plasmodium berghei. Malaria zygotes develop in the mosquito midgut lumen, forming motile ookinetes. Up to 50% of these exhibit phenotypic markers of apoptosis; as do those grown in culture. We hypothesised that naturally occurring signals induce many ookinetes to undergo apoptosis before midgut traversal. To determine whether nitric oxide and reactive oxygen species act as such triggers, ookinetes were cultured with donors of these molecules. Exposure to the nitric oxide donor SNP induced a significant increase in ookinetes with condensed nuclear chromatin, activated caspase-like molecules and translocation of phosphatidylserine that was dose and time related. Results from an assay that detects the potential-dependent accumulation of aggregates of JC-1 in mitochondria suggested that nitric oxide does not operate via loss of mitochondrial membrane potential. L-DOPA (reactive oxygen species donor) also caused apoptosis in a dose and time dependent manner. Removal of white blood cells significantly decreased ookinetes exhibiting a marker of apoptosis in vitro. Inhibition of the activity of nitric oxide synthase in the mosquito midgut epithelium using L-NAME significantly decreased the proportion of apoptotic ookinetes and increased the number of oocysts that developed. Introduction of a nitric oxide donor into the blood meal had no effect on mosquito longevity but did reduce prevalence and intensity of infection. Thus, nitric oxide and reactive oxygen species are triggers of apoptosis in Plasmodium ookinetes. They occur naturally in the mosquito midgut lumen, sourced from infected blood and mosquito tissue. Up regulation of mosquito nitric oxide synthase activity has potential as a transmission blocking strategy

    Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii

    Get PDF
    The mosquito midgut is a site of complex interactions between the mosquito, the malaria parasite and the resident bacterial flora. In laboratory experiments, we observed significant enhancement of Plasmodium falciparum oocyst production when Anopheles gambiae (Diptera: Culicidae) mosquitoes were membrane-fed on infected blood containing gametocytes from in vitro cultures mixed with sera from rabbits immunized with A. gambiae midguts. To identify specific mechanisms, we evaluated whether the immune sera was interfering with the usual limiting activity of gram-negative bacteria in An. gambiae midguts. Enhancement of P. falciparum infection rates occurred at some stage between the ookinete and oocyst stage and was associated with greater numbers of oocysts in mosquitoes fed on immune sera. The same immune sera did not affect the sporogonic development of P. yoelii, a rodent malaria parasite. Not only did antibodies in the immune sera recognize several types of midgut-derived gram-negative bacteria (Pseudomonas spp. and Cedecea spp.), but gentamicin provided in the sugar meal 3. days before an infectious P. falciparum blood meal mixed with immune sera eliminated the enhancing effect. These results suggest that gram-negative bacteria, which normally impair P. falciparum development between the ookinete and oocyst stage, were altered by specific anti-bacterial antibodies produced by immunizing rabbits with non-antibiotic-treated midgut lysates. Because of the differences in developmental kinetics between human and rodent malaria species, the anti-bacterial antibodies had no effect on P. yoelii because their ookinetes leave the midgut much earlier than P. falciparum and so are not influenced as strongly by resident midgut bacteria. While this study highlights the complex interactions occurring between the parasite, mosquito, and midgut microbiota, the ultimate goal is to determine the influence of midgut microbiota on Plasmodium development in anopheline midguts in malaria endemic settings.Peer reviewedEntomology and Plant Patholog
    corecore