14 research outputs found

    Regulation of CEACAM1 transcription in human breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and <it>de novo </it>expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).</p> <p>Results</p> <p>Using <it>in vivo </it>footprinting and chromatin immunoprecipitation experiments we show that the <it>CEACAM1 </it>proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated the <it>CEACAM1 </it>promoter remains accessible to USF2 and partially accessible to USF1. Interferon-γ up-regulates CEACAM1 mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAi resulted in a significant decrease in CEACAM1 protein expression in MDA-MB-468 cells. The inactive <it>CEACAM1 </it>promoter in MCF7 cells exhibits decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone modifications often linked to condensed chromatin structure.</p> <p>Conclusions</p> <p>Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1 expression and that the chromatin structure of the promoter is likely maintained in a poised state that can promote rapid induction under appropriate conditions.</p

    Novel internal measurements of ion cyclotron frequency range fast-ion driven modes

    Get PDF
    Novel internal measurements and analysis of ion cyclotron frequency range fast-ion driven modes in DIII-D are presented. Observations, including internal density fluctuation (˜n) measurements obtained via Doppler backscattering, are presented for modes at low harmonics of the ion cyclotron frequency localized in the edge. The measurements indicate that these waves, identified as coherent ion cyclotron emission (ICE), have high wave number, k⊥ρfast1, consistent with the cyclotron harmonic wave branch of the magnetoacoustic cyclotron instability, or electrostatic instability mechanisms. Measurements show extended spatial structure (at least ∼1/6 the minor radius). These edge ICE modes undergo amplitude modulation correlated with edge localized modes (ELM) that is qualitatively consistent with expectations for ELM-induced fast-ion transport

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    A Godunov scheme for solving hyperbolic systems in a nonconservative form

    No full text
    In this paper, we developed a Godunov scheme for solving nonconservative systems. The main idea of this method is a new type of projection which illustrated the essential role of the numerical viscosity to determine the solution with shocks for system in a nonconservative form. We apply our study to a system modeling elasticity and we observe a complete agreement between the theory and the numerical results
    corecore