135 research outputs found
Partnership and Capacity Building of Local Governance
Partnership is about sharing of power, responsibility and achievements. According to the World Bank Public Private Partnership (PPP) promoting group, ―partnership refer to informal and shortterm engagements of non-governmental organizations, the private sector and/or government agencies that join forces for a shared objective; to more formal, but still short-term private sector engagements for the provision of specific services, for example, annual outsourcing arrangements for janitorial services for a school or operations of the school cafeteria; to more complex contractual arrangements, such as build, operate, transfer regimes, where the private sector takes on considerable risk and remains engaged long term; or to full privatizations‖ (World Bank Group 2014, 29).© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Partnerships for the Goals. Encyclopedia of the UN Sustainable Development Goals. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-71067-9_21-1.fi=vertaisarvioitu|en=peerReviewed
Role of N-acetylcysteine in the management of COPD
The importance of the underlying local and systemic oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD) has long been established. In view of the lack of therapy that might inhibit the progress of the disease, there is an urgent need for a successful therapeutic approach that, through affecting the pathological processes, will influence the subsequent issues in COPD management such as lung function, airway clearance, dyspnoea, exacerbation, and quality of life. N-acetylcysteine (NAC) is a mucolytic and antioxidant drug that may also influence several inflammatory pathways. It provides the sulfhydryl groups and acts both as a precursor of reduced glutathione and as a direct reactive oxygen species (ROS) scavenger, hence regulating the redox status in the cells. The changed redox status may, in turn, influence the inflammation-controlling pathways. Moreover, as a mucolytic drug, it may, by means of decreasing viscosity of the sputum, clean the bronchi leading to a decrease in dyspnoea and improved lung function. Nevertheless, as successful as it is in the in vitro studies and in vivo studies with high dosage, its actions at the dosages used in COPD management are debatable. It seems to influence exacerbation rate and limit the number of hospitalization days, however, with little or no influence on the lung function parameters. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives with their multiple molecular modes of action remain promising medication once doses and route of administration are optimized
Effects of Post-Resuscitation Treatment with N-acetylcysteine on Cardiac Recovery in Hypoxic Newborn Piglets
AIMS: Although N-acetylcysteine (NAC) can decrease reactive oxygen species and improve myocardial recovery after ischemia/hypoxia in various acute animal models, little is known regarding its long-term effect in neonatal subjects. We investigated whether NAC provides prolonged protective effect on hemodynamics and oxidative stress using a surviving swine model of neonatal asphyxia. METHODS AND RESULTS: Newborn piglets were anesthetized and acutely instrumented for measurement of systemic hemodynamics and oxygen transport. Animals were block-randomized into a sham-operated group (without hypoxia-reoxygenation [H-R, n = 6]) and two H-R groups (2 h normocapnic alveolar hypoxia followed by 48 h reoxygenation, n = 8/group). All piglets were acidotic and in cardiogenic shock after hypoxia. At 5 min after reoxygenation, piglets were given either saline or NAC (intravenous 150 mg/kg bolus + 20 mg/kg/h infusion) via for 24 h in a blinded, randomized fashion. Both cardiac index and stroke volume of H-R controls remained lower than the pre-hypoxic values throughout recovery. Treating the piglets with NAC significantly improved cardiac index, stroke volume and systemic oxygen delivery to levels not different from those of sham-operated piglets. Accompanied with the hemodynamic improvement, NAC-treated piglets had significantly lower plasma cardiac troponin-I, myocardial lipid hydroperoxides, activated caspase-3 and lactate levels (vs. H-R controls). The change in cardiac index after H-R correlated with myocardial lipid hydroperoxides, caspase-3 and lactate levels (all p<0.05). CONCLUSIONS: Post-resuscitation administration of NAC reduces myocardial oxidative stress and caused a prolonged improvement in cardiac function and in newborn piglets with H-R insults
Dysfunction of Nrf-2 in CF Epithelia Leads to Excess Intracellular H2O2 and Inflammatory Cytokine Production
Cystic fibrosis is characterized by recurring pulmonary exacerbations that lead to the deterioration of lung function and eventual lung failure. Excessive inflammatory responses by airway epithelia have been linked to the overproduction of the inflammatory cytokine IL-6 and IL-8. The mechanism by which this occurs is not fully understood, but normal IL-1β mediated activation of the production of these cytokines occurs via H2O2 dependent signaling. Therefore, we speculated that CFTR dysfunction causes alterations in the regulation of steady state H2O2. We found significantly elevated levels of H2O2 in three cultured epithelial cell models of CF, one primary and two immortalized. Increases in H2O2 heavily contributed to the excessive IL-6 and IL-8 production in CF epithelia. Proteomic analysis of three in vitro and two in vivo models revealed a decrease in antioxidant proteins that regulate H2O2 processing, by ≥2 fold in CF vs. matched normal controls. When cells are stimulated, differential expression in CF versus normal is enhanced; corresponding to an increase in H2O2 mediated production of IL-6 and IL-8. The cause of this redox imbalance is a decrease by ∼70% in CF cells versus normal in the expression and activity of the transcription factor Nrf-2. Inhibition of CFTR function in normal cells produced this phenotype, while N-acetyl cysteine, selenium, an activator of Nrf-2, and the overexpression of Nrf-2 all normalized H2O2 processing and decreased IL-6 and IL-8 to normal levels, in CF cells. We conclude that a paradoxical decrease in Nrf-2 driven antioxidant responses in CF epithelia results in an increase in steady state H2O2, which in turn contributes to the overproduction of the pro-inflammatory cytokines IL-6 and IL-8. Treatment with antioxidants can ameliorate exaggerated cytokine production without affecting normal responses
Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms
We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy
- …