974 research outputs found

    Kowalevski's analysis of the swinging Atwood's machine

    Get PDF
    We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is a infinite number of mass ratios M/mM/m where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so--called weak Painlev\'e type. However, in view of these expansions, it is not possible to distinguish between integrable and non integrable cases.Comment: 30 page

    Expanding Semiflows on Branched Surfaces and One-Parameter Semigroups of Operators

    Get PDF
    We consider expanding semiflows on branched surfaces. The family of transfer operators associated to the semiflow is a one-parameter semigroup of operators. The transfer operators may also be viewed as an operator-valued function of time and so, in the appropriate norm, we may consider the vector-valued Laplace transform of this function. We obtain a spectral result on these operators and relate this to the spectrum of the generator of this semigroup. Issues of strong continuity of the semigroup are avoided. The main result is the improvement to the machinery associated with studying semiflows as one-parameter semigroups of operators and the study of the smoothness properties of semiflows defined on branched manifolds, without encoding as a suspension semiflow

    From Kondo Effect to Fermi Liquid

    Full text link
    The Kondo effect has been playing an important role in strongly correlated electon systems. The important point is that the magnetic impurity in metals is a typical example of the Fermi liquid. In the system the local spin is conserved in the ground state and continuity with respect to Coulomb repulsion UU is satisfied. This nature is satisfied also in the periodic systems as far as the systems remain as the Fermi liquid. This property of the Fermi liquid is essential to understand the cuprate high-Tc superconductors (HTSC). On the basis of the Fermi liquid theory we develop the transport theory such as the resistivity and the Hall coefficient in strongly correlated electron systems, such as HTSC, organic metals and heavy Fermion systems. The significant role of the vertex corrections for total charge- and heat-currents on the transport phenomena is explained. By taking the effect of the current vertex corrections into account, various typical non-Fermi-liquid-like transport phenomena in systems with strong magnetic and/or superconducting flucutations are explained within the Fermi liquid theory.Comment: 14 pages, an article for the special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery

    Integrability of one degree of freedom symplectic maps with polar singularities

    Full text link
    In this paper, we treat symplectic difference equations with one degree of freedom. For such cases, we resolve the relation between that the dynamics on the two dimensional phase space is reduced to on one dimensional level sets by a conserved quantity and that the dynamics is integrable, under some assumptions. The process which we introduce is related to interval exchange transformations.Comment: 10 pages, 2 figure

    Electrical control of spin dynamics in finite one-dimensional systems

    Full text link
    We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin-impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d-model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias V_g on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of V_g. We identify regions of V_g giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.Comment: 9 pages, 11 figure

    Chain Formation by Spin Pentamers in eta-Na9V14O35

    Full text link
    The nature of the gapped ground state in the quasi-one-dimensional compound eta-Na9V14O35 cannot easily be understood, if one takes into account the odd number of spins on each structural element. Combining the results of specific heat, susceptibility and electron spin resonance measurements we show that eta-Na9V14O35 exhibits a novel ground state where multi-spin objects build up a linear chain. These objects - pentamers - consist of five antiferromagnetically arranged spins with effective spin 1/2. Their spatial extent results in an exchange constant along the chain direction comparable to the one in the high-temperature state.Comment: 6 pages, 5 figure

    Current-induced non-adiabatic spin torques and domain wall motion with spin relaxation in a ferromagnetic metallic wire

    Full text link
    Within the s-d model description, we derive the current-driven spin torque in a ferromagnet, taking explicitly into account a spin-relaxing Caldeira-Leggett bath coupling to the s-electrons. We derive Bloch-Redfield equations of motion for the s-electron spin dynamics, and formulate a systematic gradient expansion to obtain non-adiabatic (higher-order) corrections to the well-known adiabatic (first-order) spin torque. We provide simple analytical expressions for the second-order spin torque. The theory is applied to current-driven domain wall motion. Second-order contributions imply a deformation of a transverse tail-to-tail domain wall. The wall center still moves with a constant velocity that now depends on the spin-polarized current in a non-trivial manner.Comment: Phys. Rev. B, in press, replaced with published versio

    Brueckner-Goldstone perturbation theory for the half-filled Hubbard model in infinite dimensions

    Full text link
    We use Brueckner-Goldstone perturbation theory to calculate the ground-state energy of the half-filled Hubbard model in infinite dimensions up to fourth order in the Hubbard interaction. We obtain the momentum distribution as a functional derivative of the ground-state energy with respect to the bare dispersion relation. The resulting expressions agree with those from Rayleigh-Schroedinger perturbation theory. Our results for the momentum distribution and the quasi-particle weight agree very well with those obtained earlier from Feynman-Dyson perturbation theory for the single-particle self-energy. We give the correct fourth-order coefficient in the ground-state energy which was not calculated accurately enough from Feynman-Dyson theory due to the insufficient accuracy of the data for the self-energy, and find a good agreement with recent estimates from Quantum Monte-Carlo calculations.Comment: 15 pages, 8 fugures, submitted to JSTA

    Indirect RKKY interaction in any dimensionality

    Full text link
    We present an analytical method which enables one to find the exact spatial dependence of the indirect RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality nn. The corresponding momentum dependence of the Lindhard function is exactly found for any nn as well. Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers weakly hybridized to each other. Along with usual 2kF2k_F in-plane oscillations the RKKY interaction has the sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.

    Dynamic properties of the spin-1/2 XY chain with three-site interactions

    Full text link
    We consider a spin-1/2 XY chain in a transverse (z) field with multi-site interactions. The additional terms introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan-Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and hence the spin model admits a rigorous analysis. We point out the close relationships between several variants of the model which were discussed separately in previous studies. The ground-state phases (ferromagnet and two kinds of spin liquid) of the model are reflected in the dynamic structure factors of the spin chains, which are the main focus in this study. First we consider the zz dynamic structure factor reporting for this quantity a closed-form expression and analyzing the properties of the two-fermion (particle-hole) excitation continuum which governs the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we examine the xx dynamic structure factor which is governed by many-fermion excitations, reporting both analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors which are signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure
    • …
    corecore