1,302 research outputs found

    Runaway Merging of Black Holes: Analytical Constraint on the Timescale

    Get PDF
    Following the discovery of a black hole (BH) with a mass of 10^3-10^6 M(sun) in a starburst galaxy M82, we study formation of such a BH via successive merging of stellar-mass BHs within a star cluster. The merging has a runaway characteristic. This is because massive BHs sink into the cluster core and have a high number density, and because the merging probability is higher for more massive BHs. We use the Smoluchowski equation to study analytically the evolution of the BH mass distribution. Under favorable conditions, which are expected for some star clusters in starburst galaxies, the timescale of the runaway merging is at most of order 10^7 yr. This is short enough to account for the presence of a BH heavier than 10^3 M(sun) in an ongoing starburst region.Comment: 10 pages, no figures, to appear in The Astrophysical Journal (Letters

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of \sim 300 arcsec (\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    SHG microscopic observations of polar state in Li-doped KTaO3 under electric field

    Full text link
    Incipient ferroelectric KTaO3 with off-center Li impurity of the critical concentration of 2.8 mol% was investigated in order to clarify the dipole glass state under electric field. Using optical second-harmonic generation (SHG) microscope, we observed a marked history dependence of SHG intensity through zero-field cooling (ZFC), zero-field heating (ZFH), field heating after ZFC (FH/ZFC) and FH after field cooling (FH/FC). These show different paths with respect to temperature: In the ZFC/ZFH process, weak SHG was observed at low temperature, while in the FH/ZFC process, relatively high SHG appears in a limited temperature range below TF depending on the field strength, and in the FC and FH/FC processes, the SHG exhibits ferroelectric-like temperature dependence: it appears at the freezing temperature of 50K, increases with decreasing temperature and has a tendency of saturation. These experimental results strongly suggest that dipole glass state or polar nano-clusters which gradually freezes with decreasing temperature is transformed into semi-macroscopic polar state under the electric field. However at sufficiently low temperature, the freezing is so strong that the electric field cannot enlarge the polar clusters. These experimental results show that the polar nano-cluster model similar to relaxors would be more relevant in KTaO3 doped with the critical concentration of Li. Further experiments on the anisotropy of SHG determine that the average symmetry of the field-induced polar phase is tetragonal 4mm or 4, which is also confirmed by the X-ray diffraction measurement.Comment: 26 pages, 8 figures, 1 tabl

    An Origin of the Huge Far-Infrared Luminosity of Starburst Mergers

    Full text link
    Recently Taniguchi and Ohyama found that the higher 12^{12}CO to 13^{13}CO integrated intensity ratios at a transition JJ=1--0, R=I(12R = I(^{12}CO)/I(13/I(^{13}CO) 20\gtrsim 20, in a sample of starburst merging galaxies such as Arp 220 are mainly attributed to the depression of 13^{13}CO emission with respect to 12^{12}CO. Investigating the same sample of galaxies analyzed by Taniguchi & Ohyama, we find that there is a tight, almost linear correlation between the dust mass and 13^{13}CO luminosity. This implies that dust grains are also depressed in the high-RR starburst mergers, leading to the higher dust temperature (TdT_{\rm d}) in them because of the relative increase in the radiation density. Nevertheless, the average dust mass (MdM_{\rm d}) of the high-RR starburst mergers is higher significantly than that of non-high RR galaxies. This is naturally understood because the galaxy mergers could accumulate a lot of dust grains from their progenitor galaxies together with supply of dust grains formed newly in the star forming regions. Since LL(FIR) MdTd5\propto M_{\rm d} T_{\rm d}^5 given the dust emissivity law, Sνλ1S_\nu \propto \lambda^{-1}, the increases in both MdM_{\rm d} and TdT_{\rm d} explain well why the starburst mergers are so bright in the FIR. We discuss that the superwind activity plays an important role in destroying dust grains as well as dense gas clouds in the central region of mergers.Comment: 10 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for publication in Astrophysical Journal Letter

    Brodalumab in patients with GPP and PsE

    Get PDF
    Background A T‐helper (Th) cell subset Th17 preferentially produces interleukin (IL)‐17 and plays a pivotal role in the pathogenesis of psoriasis. However, the pathological roles of IL‐17 cascades in generalized pustular psoriasis (GPP) and psoriatic erythroderma (PsE) have not been well established. Objectives To evaluate the efficacy and safety of brodalumab, a human immunoglobulin G2 monoclonal antibody against human IL ‐17‐receptor A (IL‐17RA), in Japanese patients with GPP and PsE. Methods This was an open‐label, multicentre, long‐term phase III study in Japanese patients with rare and severe types of psoriasis. Patients received brodalumab 140 mg at day 1 and weeks 1 and 2, and then every 2 weeks until week 52. The primary endpoint was the Clinical Global Impression of Improvement (CGI). Safety evaluations included treatment‐emergent adverse events (AEs) and changes in laboratory parameters. Results A total of 12 patients with GPP and 18 with PsE were enrolled. Ten patients with GPP and 16 with PsE completed the study. At week 52 (last observation carried forward), CGI remission or improvement was achieved in 11 patients with GPP and 18 with PsE. The most commonly reported AE was nasopharyngitis (33·3%). Five serious AE s occurred during the study. However, none was considered treatment‐related. Conclusions Brodalumab significantly improved the symptoms of patients with GPP and PsE throughout the 52 weeks, and demonstrated favourable safety profiles without any new safety signals. Inhibition of IL‐17RA‐mediated signalling by brodalumab is expected to be a promising new treatment option for patients with GPP and PsE

    Polar surface engineering in ultra-thin MgO(111)/Ag(111) -- possibility of metal-insulator transition and magnetism

    Get PDF
    A recent report [Kiguchi {\it et al.}, Phys. Rev. B {\bf 68}, 115402 (2003)] that the (111) surface of 5 MgO layers grown epitaxially on Ag(111) becomes metallic to reduce the electric dipole moment raises a question of what will happen when we have fewer MgO layers. Here we have revealed, first experimentally with electron energy-loss spectroscopy, that MgO(111) remains metallic even when one-layer thick, and theoretically with the density functional theory that the metallization should depend on the nature of the substrate. We further show, with a spin-density functional calculation, that a ferromagnetic instability may be expected for thicker films.Comment: 5 pages, 7 figure

    Intersubband electronic Raman scattering in narrow GaAs single quantum wells dominated by single-particle excitations

    Full text link
    We measured resonant Raman scattering by intersubband electronic excitations in GaAs/AlAs single quantum wells (QWs) with well widths ranging from 8.5 to 18 nm. In narrow (less than 10 nm) QWs with sufficiently high electron concentrations, only single-particle excitations (SPEs) were observed in intersubband Raman scattering, which was confirmed by the well-width dependence of Raman spectra. We found characteristic variations in Raman shift and line shape for SPEs with incident photon energy in the narrow QWs.Comment: 5 pages including 4 figure

    Scalability of spin FPGA: A Reconfigurable Architecture based on spin MOSFET

    Full text link
    Scalability of Field Programmable Gate Array (FPGA) using spin MOSFET (spin FPGA) with magnetocurrent (MC) ratio in the range of 100% to 1000% is discussed for the first time. Area and speed of million-gate spin FPGA are numerically benchmarked with CMOS FPGA for 22nm, 32nm and 45nm technologies including 20% transistor size variation. We show that area is reduced and speed is increased in spin FPGA owing to the nonvolatile memory function of spin MOSFET.Comment: 3 pages, 7 figure

    Dominance of a single topological sector in gauge theory on non-commutative geometry

    Full text link
    We demonstrate a striking effect of non-commutative (NC) geometry on topological properties of gauge theory by Monte Carlo simulations. We study 2d U(1) NC gauge theory for various boundary conditions using a new finite-matrix formulation proposed recently. We find that a single topological sector dictated by the boundary condition dominates in the continuum limit. This is in sharp contrast to the results in commutative space-time based on lattice gauge theory, where all topological sectors appear with certain weights in the continuum limit. We discuss possible implications of this effect in the context of string theory compactifications and in field theory contexts.Comment: 16 pages, 27 figures, typos correcte
    corecore