201 research outputs found

    On spiking neural P systems

    Get PDF
    This work deals with several aspects concerning the formal verification of SN P systems and the computing power of some variants. A methodology based on the information given by the transition diagram associated with an SN P system is presented. The analysis of the diagram cycles codifies invariants formulae which enable us to establish the soundness and completeness of the system with respect to the problem it tries to resolve. We also study the universality of asynchronous and sequential SN P systems and the capability these models have to generate certain classes of languages. Further, by making a slight modification to the standard SN P systems, we introduce a new variant of SN P systems with a special I/O mode, called SN P modules, and study their computing power. It is demonstrated that, as string language acceptors and transducers, SN P modules can simulate several types of computing devices such as finite automata, a-finite transducers, and systolic trellis automata.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía TIC-58

    L-systems in Geometric Modeling

    Full text link
    We show that parametric context-sensitive L-systems with affine geometry interpretation provide a succinct description of some of the most fundamental algorithms of geometric modeling of curves. Examples include the Lane-Riesenfeld algorithm for generating B-splines, the de Casteljau algorithm for generating Bezier curves, and their extensions to rational curves. Our results generalize the previously reported geometric-modeling applications of L-systems, which were limited to subdivision curves.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    IgTM: An algorithm to predict transmembrane domains and topology in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to their role of receptors or transporters, membrane proteins play a key role in many important biological functions. In our work we used Grammatical Inference (GI) to localize transmembrane segments. Our GI process is based specifically on the inference of Even Linear Languages.</p> <p>Results</p> <p>We obtained values close to 80% in both specificity and sensitivity. Six datasets have been used for the experiments, considering different encodings for the input sequences. An encoding that includes the topology changes in the sequence (from inside and outside the membrane to it and vice versa) allowed us to obtain the best results. This software is publicly available at: <url>http://www.dsic.upv.es/users/tlcc/bio/bio.html</url></p> <p>Conclusion</p> <p>We compared our results with other well-known methods, that obtain a slightly better precision. However, this work shows that it is possible to apply Grammatical Inference techniques in an effective way to bioinformatics problems.</p

    Has the liver and other visceral organs migrated to its normal position in children with giant omphalocele? A follow-up study with ultrasonography

    Get PDF
    Contains fulltext : 88428.pdf (publisher's version ) (Closed access)This study evaluates whether, on the long run, in patients born with a giant omphalocele, the liver and other solid organs reach their normal position, shape, and size. Seventeen former patients with a giant omphalocele, treated between 1970 and 2004, were included. Physical examination was supplemented with ultrasonography for ventral hernia and precise description of the liver, spleen, and kidneys. The findings were compared with 17 controls matched for age, gender, and body mass index. We found an abnormal position of the liver, spleen, left kidney, and right kidney in eight, six, five, and four patients, respectively. An unprotected liver was present in all 17 patients and in 11 controls, the difference being statistically significant (p = 0.04). In ten of the 11 patients with an incisional hernia, the liver was located underneath the abdominal defect. CONCLUSION: In all former patients with a giant omphalocele, an abnormal position of the liver and in the majority of them, an incisional hernia was also found. The liver and sometimes also the spleen and the kidneys do not migrate to their normal position. Exact documentation and good information are important for both the patient and their caretakers in order to avoid liver trauma.1 mei 201

    Computational genes: a tool for molecular diagnosis and therapy of aberrant mutational phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A finite state machine manipulating information-carrying DNA strands can be used to perform autonomous molecular-scale computations at the cellular level.</p> <p>Results</p> <p>We propose a new finite state machine able to detect and correct aberrant molecular phenotype given by mutated genetic transcripts. The aberrant mutations trigger a cascade reaction: specific molecular markers as input are released and induce a spontaneous self-assembly of a wild type protein or peptide, while the mutational disease phenotype is silenced. We experimentally demostrated in <it>in vitro </it>translation system that a viable protein can be autonomously assembled.</p> <p>Conclusion</p> <p>Our work demostrates the basic principles of computational genes and particularly, their potential to detect mutations, and as a response thereafter administer an output that suppresses the aberrant disease phenotype and/or restores the lost physiological function.</p

    A Transgenic Model for Conditional Induction and Rescue of Portal Hypertension Reveals a Role of VEGF-Mediated Regulation of Sinusoidal Fenestrations

    Get PDF
    Portal hypertension (PH) is a common complication and a leading cause of death in patients with chronic liver diseases. PH is underlined by structural and functional derangement of liver sinusoid vessels and its fenestrated endothelium. Because in most clinical settings PH is accompanied by parenchymal injury, it has been difficult to determine the precise role of microvascular perturbations in causing PH. Reasoning that Vascular Endothelial Growth Factor (VEGF) is required to maintain functional integrity of the hepatic microcirculation, we developed a transgenic mouse system for a liver-specific-, reversible VEGF inhibition. The system is based on conditional induction and de-induction of a VEGF decoy receptor that sequesters VEGF and preclude signaling. VEGF blockade results in sinusoidal endothelial cells (SECs) fenestrations closure and in accumulation and transformation of the normally quiescent hepatic stellate cells, i.e. provoking the two processes underlying sinusoidal capillarization. Importantly, sinusoidal capillarization was sufficient to cause PH and its typical sequela, ascites, splenomegaly and venous collateralization without inflicting parenchymal damage or fibrosis. Remarkably, these dramatic phenotypes were fully reversed within few days from lifting-off VEGF blockade and resultant re-opening of SECs' fenestrations. This study not only uncovered an indispensible role for VEGF in maintaining structure and function of mature SECs, but also highlights the vasculo-centric nature of PH pathogenesis. Unprecedented ability to rescue PH and its secondary manifestations via manipulating a single vascular factor may also be harnessed for examining the potential utility of de-capillarization treatment modalities

    Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver- Re-evaluations of microlymphatic abnormalities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From the morphological appearance, it was impossible to distinguish terminal portal venules from small lymphatic vessels in the portal tract even using histochemical microscopic techniques. Recently, D2-40 was found to be expressed at a high level in lymphatic endothelial cells (LECs). This study was undertaken to elucidate hepatic lymphatic vessels during progression of cirrhosis by examining the expression of D2-40 in LECs.</p> <p>Methods</p> <p>Surgical wedge biopsy specimens were obtained from non-cirrhotic portions of human livers (normal control) and from cirrhotic livers (LC) (Child A-LC and Child C-LC). Immunohistochemical (IHC), Western blot, and immunoelectron microscopic studies were conducted using D2-40 as markers for lymphatic vessels, as well as CD34 for capillary blood vessels.</p> <p>Results</p> <p>Imunostaining of D2-40 produced a strong reaction in lymphatic vessels only, especially in Child C-LC. It was possible to distinguish the portal venules from the small lymphatic vessels using D-40. Immunoelectron microscopy revealed strong D2-40 expression along the luminal and abluminal portions of the cell membrane of LECs in Child C-LC tissue.</p> <p>Conclusion</p> <p>It is possible to distinguish portal venules from small lymphatic vessels using D2-40 as marker. D2-40- labeling in lymphatic capillary endothelial cells is related to the degree of fibrosis in cirrhotic liver.</p

    Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion

    Get PDF
    WOS: 000264914000001PubMed ID: 19239691Turkish Scientific and Technological Research Council (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [SBAG-107S026]; Dokuz Eylul University Research FoundationDokuz Eylul University [05.KB.SAG.071]We thank Prof. Mehmet Ozturk for providing us HCC cell lines and for his critical reading of the manuscript; and Prof. Aykut Uren for his helpful discussions on the manuscript. We also thank to Evin Ozen for her technical assistance. This work was supported by grants to Nese ATABEY from the Turkish Scientific and Technological Research Council (TUBITAK, SBAG-107S026) and Dokuz Eylul University Research Foundation (05.KB.SAG.071)
    corecore