914 research outputs found

    Tax evasion and exchange equity: a reference-dependent approach

    Get PDF
    The standard portfolio model of tax evasion with a public good produces the perverse conclusion that when taxpayers perceive the public good to be under-/overprovided, an increase in the tax rate increases/decreases evasion. The author treats taxpayers as thinking in terms of gains and losses relative to an endogenous reference level, which reflects perceived exchange equity between the value of taxes paid and the value of public goods supplied. With these alternative behavioral assumptions, the author overturns the aforementioned result in a direction consistent with the empirical evidence. The author also finds a role for relative income in determining individual responses to a change in the marginal rate of tax

    Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow

    Get PDF
    Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (i) the two‐way interaction between introgression and the evolution of reproductive systems, and (ii) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation

    Properties of Classical and Quantum Jensen-Shannon Divergence

    Full text link
    Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha is the square of a metric for alpha lies in the interval (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order alpha (QJD_alpha). We strengthen results by Lamberti et al. by proving that for qubits and pure states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in a real Hilbert space when alpha lies in the interval (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected typo

    Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow

    Get PDF
    Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation

    Observation of the Stimulated Quantum Cherenkov Effect

    Full text link
    As charged particles surpass the speed of light in an optical medium they produce radiation - analogously to the way jet planes surpass the speed of sound and produce a sonic boom. This radiation emission, known as the Cherenkov effect, is among the most fundamental processes in electrodynamics. As such, it is used in numerous applications of particle detectors, particle accelerators, light sources, and medical imaging. Surprisingly, all Cherenkov-based applications and experiments thus far were fully described by classical electrodynamics even though theoretical work predicts new Cherenkov phenomena coming from quantum electrodynamics. The quantum description could provide new possibilities for the design of highly controllable light sources and more efficient accelerators and detectors. Here, we provide a direct evidence of the quantum nature of the Cherenkov effect and reveal its intrinsic quantum features. By satisfying the Cherenkov condition for relativistic electron wavefunctions and maintaining it over hundreds of microns, each electron simultaneously accelerates and decelerates by absorbing and emitting hundreds of photons in a coherent manner. We observe this strong interaction in an ultrafast transmission electron microscope, achieving for the first time a phase-matching between a relativistic electron wavefunction and a propagating light wave. Consequently, the quantum wavefunction of each electron evolves into a coherent plateau, analogous to a frequency comb in ultrashort laser pulses, containing hundreds of quantized energy peaks. Our findings prove that the delocalized wave nature of electrons can become dominant in stimulated interactions. In addition to prospects for known applications of the Cherenkov effect, our work provides a platform for utilizing quantum electrodynamics for applications in electron microscopy and in free-electron pump-probe spectroscopy.Comment: 15 pages, 4 figure

    Revamping AI Models in Dermatology: Overcoming Critical Challenges for Enhanced Skin Lesion Diagnosis

    Full text link
    The surge in developing deep learning models for diagnosing skin lesions through image analysis is notable, yet their clinical black faces challenges. Current dermatology AI models have limitations: limited number of possible diagnostic outputs, lack of real-world testing on uncommon skin lesions, inability to detect out-of-distribution images, and over-reliance on dermoscopic images. To address these, we present an All-In-One \textbf{H}ierarchical-\textbf{O}ut of Distribution-\textbf{C}linical Triage (HOT) model. For a clinical image, our model generates three outputs: a hierarchical prediction, an alert for out-of-distribution images, and a recommendation for dermoscopy if clinical image alone is insufficient for diagnosis. When the recommendation is pursued, it integrates both clinical and dermoscopic images to deliver final diagnosis. Extensive experiments on a representative cutaneous lesion dataset demonstrate the effectiveness and synergy of each component within our framework. Our versatile model provides valuable decision support for lesion diagnosis and sets a promising precedent for medical AI applications

    Cognitive and Affective Empathy, Personal Belief in a Just World, and Bullying Among Offenders

    Get PDF
    Bullying extract a heavy toll on offenders and the prison staff alike. We examined factors that may contribute to having a positive attitude towards bullying in a sample of offenders. Specifically, we studied the previously overlooked relationship between age and positive attitude towards bullying and whether this relationship is mediated by affective and/or cognitive empathy. Furthermore, we assessed the relationship between personal belief in a just world and positive attitude towards bullying, given that previous research on the topic is scarce. We found that age predicted a positive attitude toward bullying, mediated by affective empathy. However, we did not find a positive relationship between a positive attitude toward bullying and a personal belief in a just world. The results are discussed in terms of their application in possible intervention programs
    corecore