46,597 research outputs found
Ultraviolet photonic crystal laser
We fabricated two dimensional photonic crystal structures in zinc oxide films
with focused ion beam etching. Lasing is realized in the near ultraviolet
frequency at room temperature under optical pumping. From the measurement of
lasing frequency and spatial profile of the lasing modes, as well as the
photonic band structure calculation, we conclude that lasing occurs in the
strongly localized defect modes near the edges of photonic band gap. These
defect modes originate from the structure disorder unintentionally introduced
during the fabrication process.Comment: 4 pages, 4 figure
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
For person re-identification, existing deep networks often focus on
representation learning. However, without transfer learning, the learned model
is fixed as is, which is not adaptable for handling various unseen scenarios.
In this paper, beyond representation learning, we consider how to formulate
person image matching directly in deep feature maps. We treat image matching as
finding local correspondences in feature maps, and construct query-adaptive
convolution kernels on the fly to achieve local matching. In this way, the
matching process and results are interpretable, and this explicit matching is
more generalizable than representation features to unseen scenarios, such as
unknown misalignments, pose or viewpoint changes. To facilitate end-to-end
training of this architecture, we further build a class memory module to cache
feature maps of the most recent samples of each class, so as to compute image
matching losses for metric learning. Through direct cross-dataset evaluation,
the proposed Query-Adaptive Convolution (QAConv) method gains large
improvements over popular learning methods (about 10%+ mAP), and achieves
comparable results to many transfer learning methods. Besides, a model-free
temporal cooccurrence based score weighting method called TLift is proposed,
which improves the performance to a further extent, achieving state-of-the-art
results in cross-dataset person re-identification. Code is available at
https://github.com/ShengcaiLiao/QAConv.Comment: This is the ECCV 2020 version, including the appendi
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Self-optimization of optical confinement in ultraviolet photonic crystal slab laser
We studied numerically and experimentally the effects of structural disorder
on the performance of ultraviolet photonic crystal slab lasers. Optical gain
selectively amplifies the high-quality modes of the passive system. For these
modes, the in-plane and out-of-plane leakage rates may be automatically
balanced in the presence of disorder. The spontaneous optimization of in-plane
and out-of-plane confinement of light in a photonic crystal slab may lead to a
reduction of the lasing threshold.Comment: 5 pages, 5 figure
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic
neutron star responding to quake-induced perturbation by differentially
rotational, torsional, oscillations of crustal electron-nuclear solid-state
plasma about axis of magnetic field frozen in the immobile paramagnetic core is
developed. Particular attention is given to the node-free torsional
crust-against-core vibrations under combined action of Lorentz magnetic and
Hooke's elastic forces; the damping is attributed to Newtonian force of shear
viscose stresses in crustal solid-state plasma. The spectral formulae for the
frequency and lifetime of this toroidal mode are derived in analytic form and
discussed in the context of quasi-periodic oscillations of the X-ray outburst
flux from quaking magnetars. The application of obtained theoretical spectra to
modal analysis of available data on frequencies of oscillating outburst
emission suggests that detected variability is the manifestation of crustal
Alfven's seismic vibrations restored by Lorentz force of magnetic field
stresses.Comment: 10 pages, 10 figure
Three-Dimensional Modelling and Simulation of the Ice Accretion Process on Aircraft Wings
© 2018 Chang S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.In this article, a new computational method for the three-dimensional (3D) ice accretion analysis on an aircraft wing is formulated and validated. The two-phase flow field is calculated based on Eulerian-Eulerian approach using standard dispersed turbulence model and second order upwind differencing with the aid of commercial software Fluent, and the corresponding local droplet collection efficiency, convective heat transfer coefficient, freezing fraction and surface temperature are obtained. The classical Messinger model is modified to be capable of describing 3D thermodynamic characteristics of ice accretion. Considering effects of runback water, which is along chordwise and spanwise direction, an extended Messinger method is employed for the prediction of the 3D ice accretion rates. Validation of the newly developed model is carried out through comparisons with available experimental ice shape and LEWICE codes over a GLC-305 wing under both rime and glaze icing conditions. Results show that good agreement is achieved between the current computational ice shapes and the compared results. Further calculations based on the proposed method over a M6 wing under different test conditions are numerically demonstrated.Peer reviewedFinal Published versio
- …