310 research outputs found

    Echinocyte Shapes: Bending, Stretching and Shear Determine Spicule Shape and Spacing

    Get PDF
    We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte.Comment: Revtex, 27 pages, 8 figures; some minor change

    Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory

    Full text link
    Phase-contrast microscopy is used to monitor the shapes of micron-scale fluid-phase phospholipid-bilayer vesicles in aqueous solution. At fixed temperature, each vesicle undergoes thermal shape fluctuations. We are able experimentally to characterize the thermal shape ensemble by digitizing the vesicle outline in real time and storing the time-sequence of images. Analysis of this ensemble using the area-difference-elasticity (ADE) model of vesicle shapes allows us to associate (map) each time-sequence to a point in the zero-temperature (shape) phase diagram. Changing the laboratory temperature modifies the control parameters (area, volume, etc.) of each vesicle, so it sweeps out a trajectory across the theoretical phase diagram. It is a nontrivial test of the ADE model to check that these trajectories remain confined to regions of the phase diagram where the corresponding shapes are locally stable. In particular, we study the thermal trajectories of three prolate vesicles which, upon heating, experienced a mechanical instability leading to budding. We verify that the position of the observed instability and the geometry of the budded shape are in reasonable accord with the theoretical predictions. The inability of previous experiments to detect the ``hidden'' control parameters (relaxed area difference and spontaneous curvature) make this the first direct quantitative confrontation between vesicle-shape theory and experiment.Comment: submitted to PRE, LaTeX, 26 pages, 11 ps-fi

    Origin of Native Driving Force in Protein Folding

    Full text link
    We derive an expression with four adjustable parameters that reproduces well the 20x20 Miyazawa-Jernigan potential matrix extracted from known protein structures. The numerical values of the parameters can be approximately computed from the surface tension of water, water-screened dipole interactions between residues and water and among residues, and average exposures of residues in folded proteins.Comment: LaTeX file, Postscript file; 4 pages, 1 figure (mij.eps), 2 table

    Nonlocal Conductivity in the Vortex-Liquid Regime of a Two-Dimensional Superconductor

    Full text link
    We have simulated the time-dependent Ginzburg-Landau equation with thermal fluctuations, to study the nonlocal dc conductivity of a superconducting film. Having examined points in the phase diagram at a wide range of temperatures and fields below the mean-field upper critical field, we find a portion of the vortex-liquid regime in which the nonlocal ohmic conductivity in real space is negative over a distance several times the spacing between vortices. The effect is suppressed when driven beyond linear response. Earlier work had predicted the existence of such a regime, due to the high viscosity of a strongly-correlated vortex liquid. This behavior is clearly distinguishable from the monotonic spatial fall-off of the conductivity in the higher temperature or field regimes approaching the normal state. The possibilities for experimental study of the nonlocal transport properties are discussed.Comment: 18 pages, revtex, 6 postscript figure

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Solitary Waves of Planar Ferromagnets and the Breakdown of the Spin-Polarized Quantum Hall Effect

    Full text link
    A branch of uniformly-propagating solitary waves of planar ferromagnets is identified. The energy dispersion and structures of the solitary waves are determined for an isotropic ferromagnet as functions of a conserved momentum. With increasing momentum, their structure undergoes a transition from a form ressembling a droplet of spin-waves to a Skyrmion/anti-Skyrmion pair. An instability to the formation of these solitary waves is shown to provide a mechanism for the electric field-induced breakdown of the spin-polarized quantum Hall effect.Comment: 5 pages, 3 eps-figures, revtex with epsf.tex and multicol.st

    Toll-like Receptor 7-Dependent Loss of B Cell Tolerance in Pathogenic Autoantibody Knockin Mice

    Get PDF
    SummarySystemic lupus erythematosus (SLE) is characterized by the production of autoantibodies that are frequently directed against nucleic acid-associated antigens. To better understand how B cells reactive with such antigens are regulated, we generated a model system in which heavy and light chain genes encoding 564 immunoglobulin have been targeted to the heavy and light chain loci of the nonautoimmune C57BL/6 mouse strain. This antibody recognizes RNA, single-stranded DNA, and nucleosomes. We show that B cells expressing this immunoglobulin were activated, producing class-switched autoantibody in vivo despite the apparently normal induction of anergy. This autoantibody production was largely dependent on Toll-like receptor 7 (TLR7). We further show that production of these autoantibodies was sufficient to cause kidney pathology in these mice. These results demonstrate that the particular threat of nucleic acid-containing autoantigens lies in their ability to bind both antigen receptor and TLR7

    Critical Phenomena with Linked Cluster Expansions in a Finite Volume

    Full text link
    Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such as Monte Carlo simulations. Our computational tools are illustrated at the example of scalar O(N) models with four and six-point couplings for N=1N=1 and N=4N=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and tarred tex file hdth9607.te
    corecore