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ABSTRACT We study the shapes of human red blood cells using continuum mechanics. In particular, we model the
crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma
membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate
spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A
simple scaling analysis of this competition reveals an elastic length �el, which sets the length scale for the spicules and is,
thus, related to the number of spicules experimentally observed on the fully developed echinocyte.

INTRODUCTION

The normal resting shape of the human red blood cell (RBC
or erythrocyte) is a flattened biconcave disc (discocyte) �8
�m in diameter. Treatment of erythrocytes in vitro with a
variety of amphipathic agents is known to transform this
shape systematically and reversibly into various other
shapes such as echinocytes (crenated shapes) and stomato-
cytes (cup-like shapes), which are further subdivided into
classes labeled I, II, and III (Brecher and Bessis, 1972;
Bessis, 1973; Chailley et al., 1973; Mohandas and Feo,
1975). In particular, the echinocyte III is a more-or-less
spherical body covered evenly with 25 to 50 rounded pro-
tuberances, which we shall call spicules.

These shape transformations—from the discocyte to the
stomatocyte on one side and from the discocyte to the
echinocyte on the other—have been studied experimentally
for more than 50 years. Understanding these shapes and
shape transformations is a classic problem in cell biology;
over the past three decades it has also attracted the attention
of physicists. What makes this problem so intriguing is that
the structure of the red cell is remarkably simple. To a good
approximation it is simply a bag of fluid, a concentrated
solution of hemoglobin surrounded by a thin macroscopi-
cally homogeneous membrane. Thus, the diverse resting
shapes that it exhibits can be thought of as (locally) stable
mechanical equilibrium shapes of the membrane. This
membrane is composite (Steck, 1989; Alberts et al., 1994).
On the outside is the plasma membrane, a self-assembled
fluid bilayer with a thickness of �4 nm, composed of a
complex mix of phospholipids, cholesterol, and dissolved
proteins. Lipids such as phosphatidylcholine, sphingomye-
lin, and glycophospholipids, which are neutral at physiolog-
ical pH, are common in the outer leaflet, whereas phospha-
tidylserine and phosphatidylethanolamine predominate in

the inner leaflet (Gennis, 1989; Alberts et al., 1994). Due to
the negative charge of phosphatidylserine, located in the
inner leaflet, there is a significant difference in charge
between the two leaflets of the bilayer. Inside the plasma
membrane but linked to it by protein anchors is a thin,
two-dimensionally cross-linked protein cytoskeleton, the
membrane skeleton (Steck, 1989; Bennett, 1990). The skel-
eton is an hexagonally linked net, each unit of which is a
filamentous spectrin tetramer with an extended length of
�200 nm; the end-to-end distance is reduced appreciably in
the relaxed state by thermal fluctuations (Boal, 1994). The
spectrin tetramer is negatively charged at physiological pH.
In the red cell membrane, the distance between the vertices
of the net is �76 nm, whereas the offset between the plasma
membrane and the spectrin network is 30 to 50 nm (Byers
and Branton, 1985; Liu et al., 1987). Functionally, the
plasma membrane serves as an osmotic barrier, passing
water with relative ease but controlling, via a system of
pumps and channels, the flow of ions and larger solute
molecules. The membrane skeleton has the role of support-
ing and toughening the plasma membrane, which would
otherwise disintegrate in circulatory shear flow.

Although the RBC membrane is certainly heterogeneous
at the length scale of individual lipid molecules, lipid
patches or the basic spectrin tetramer, on scales longer than
100 nm it is reasonably homogeneous in its properties, and
it may make sense to treat it as a mechanical continuum. In
this spirit and following early work by Canham (1970),
Helfrich (Helfrich, 1973; Deuling and Helfrich, 1976), and
others, we imagine replacing the (fluid-phase) plasma mem-
brane by an ideal uniform two-dimensional surface charac-
terized by a bending rigidity �b, taken for the RBC to be
(Waugh and Bauserman, 1995; Strey et al., 1995) 2.0 �
10�19 J (roughly 50 kBTroom, where kB is Boltzmann’s
constant), a spontaneous curvature C0, which recognizes the
outside-inside asymmetry of the leaflet composition, and an
area-difference-elasticity (ADE) term (Helfrich, 1973;
Evans, 1974; Svetina et al., 1985; Božič et al., 1992; Wiese
et al., 1992; Miao et al., 1994), which reflects the fact that
a difference in relaxed area, �A0, between the outer and
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inner leaflets produces a “bilayer couple” (Sheetz and
Singer, 1974) tending to make the membrane become con-
vex with the larger-area side on the outside of the convexity
(like a bimetallic strip). We assign to the modulus �� asso-
ciated with the ADE term a value of (Waugh and Bauser-
man, 1995) 1.27 � 10�19 J. These terms taken together
constitute what is called the ADE model of the plasma
membrane. In addition, we represent the RBC membrane
skeleton as a two-dimensional elastic continuum character-
ized by a bulk stretching modulus K� and a shear modulus
� with � � 2.5 � 10�6 J/m2 and K� � 3 � (see Discus-
sion). These two mechanical subsystems, constrained to the
same mathematical surface, will constitute our model of the
RBC shape at length scales above 100 nm (for full details,
see The Model).

The basic hypothesis of the mechanical approach is that
the observed RBC shapes must be shapes that minimize the
energy subject to appropriate constraints on volume and
area, i.e., that all the observed RBC shapes must emerge as
local energy minima of this model and that the observed
shape transformations must come about as a response of the
minimum-energy shapes to changes in the “control param-
eters,” which characterize the model. There are relatively
few such control parameters. In addition to the known area
and volume of the RBC, we include in the list the three
mechanical moduli noted above, the spontaneous curvature
C0, the relaxed area difference �A0 between the bilayer
leaflets, and parameters describing the effective relaxed size
and shape of the membrane skeleton. If all these control
parameters were known or easily measurable, we could
predict the stable RBC shapes using continuum mechanics.
The fact that they are not restricts us, as we shall see, to
somewhat more generic predictions.

This program has already been carried out, albeit in
somewhat restricted form, with respect to the discocyte and
stomatocyte shapes. The shapes and shape transitions of
laboratory-prepared fluid-phase phospholipid vesicles
(lacking any skeleton) have been successfully described by
the ADE model (Miao et al., 1994; Döbereiner et al., 1997).
In particular, plausible discocytic and stomatocytic shapes
do occur as energy-minimizing shapes of the ADE model.
Furthermore, the bilayer-couple mechanism (Sheetz and
Singer, 1974) accounts qualitatively for many of the chem-
ically induced discocyte-stomatocyte transitions observed in
the laboratory, in that stomatocytogenic agents tend to seg-
regate to the inner leaf of the bilayer, thus making �A0

negative and favoring the invaginated stomatocyte shape
(see more below). There has been discussion in the literature
of the way in which introducing the elastic energy of the
membrane skeleton modifies or improves the detailed pre-
diction for the shape of the normal resting discocyte (Zarda
et al., 1977; Evans and Skalak, 1980). However, most
treatments in the literature tend to regard the cytoskeletal
elastic energy as providing only perturbative modification
of the basic shapes, which emerge from the pure-bending-

energy model. We shall argue that this point of view fails
completely in describing echinocyte shapes.

Until recently, it was a major difficulty for a fully me-
chanical picture of the RBC shapes that echinocytic shapes
have not been found in the catalog of minimum-energy
shapes of the ADE model; however, several authors have
now pointed out what we believe is the correct resolution of
this problem (Waugh, 1996; Iglič, 1997; Iglič et al.,
1998a,b; Wortis, 1998). A pure-lipid vesicle with a suffi-
ciently positive spontaneous curvature (or, equivalently,
sufficiently large positive �A0) adopts a vesiculated or
budded shape, in which one or more quasispherical buds
appears on the outside of the main body of the vesicle,
attached to it via a narrow neck or necks (Fig. 1). Such
necks are allowed as low-energy structures for pure-lipid
vesicles, because the bending energy depends on the sum of
the two principal curvatures (see The Model), so that large
curvatures of opposite sign (characteristic of necks) can still
lead to a small mean curvature and, thus, to low energy
(Fourcade et al., 1994). But (and this is the crucial point)
small necks involve large elastic strains in the membrane
skeleton and are, thus, inhibited by elastic energy cost. It is
not surprising that they are not seen for undamaged RBCs.
What our calculations show is that the formation of echi-
nocytes is driven by positive C0 (equivalently, positive �A0)
and that the spiculated shapes seen in experiments can arise
from a competition between the bending energy of the
plasma membrane, which by itself would promote budding,
and the stretching and shear elastic energies of the mem-
brane skeleton, which prevent it. To make this more precise,
we note that the ratio of the bending modulus to the shear
modulus (or the stretching modulus) defines an elastic
length scale,

�el � ��b

�
, (1)

which yields �el � 0.28 �m. We shall see below that this
number sets the scale of spicule size and, thus, fixes the
spicule density of the fully developed echinocyte (echino-
cyte III).

FIGURE 1 (a) Budded or vesiculated shape, which would be a low-
energy configuration of a lipid membrane without cytoskeleton at suffi-
ciently positive spontaneous curvature. (b) Spiculated shape into which (a)
is transformed by the elastic-energy cost of cytoskeletal deformations in
the high-shear neck regions.
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The success of this approach strengthens the hypothesis
that RBC shapes can be understood on the basis of contin-
uum mechanics; however, in themselves, such calculations
cannot answer the question, “Why does a particular shape
occur under given experimental conditions?” Such a ques-
tion has two parts. Why do the control parameters have the
values they do? How does this set of control parameters lead
to the observed shape? The second part is the proper domain
of continuum mechanics. The first part is primarily biolog-
ical or biochemical in content and revolves around the
mechanisms that control the lipid composition of the leaflets
of the plasma membrane, local electrostatic effects, the
composition and environment of the spectrin network, and
its coupling to the plasma membrane, and any other deter-
minants of C0, �A0, the elastic moduli, and other control
parameters. Hopefully, this separation of the question is
useful.

The plan of this paper is as follows. In the remainder of
this section, we briefly review some history of echinocyte
shapes and shape calculations. The Model section presents
the details of the continuum-mechanics model. Theory sec-
tion discusses the theory required to solve the model nu-
merically for echinocyte shapes, including a full account of
the scaling argument suggested above. The Results section
presents our results for the predicted echinocyte shapes and
spicule density. The Discussion section contains discussion
of our results and further speculations.

The discocyte-to-echinocyte transformation was pre-
cisely identified by Ponder (1948, 1955) and has since been
studied extensively by many other authors, as reviewed, for
example, by Bessis (1973), Lange et al. (1982), and Steck
(1989). Although this transformation can be driven in many
ways, the final spiculated shapes produced are apparently
the same (Smith et al., 1982; Mohandas and Feo, 1975).
This quasi-universal behavior is evidence for the kind of
mechanism suggested above, in which quite diverse bio-
chemical processes may set (a few) important control pa-
rameters to the same or similar values. In the same spirit, we
note that RBC ghosts (formed by hemolysis) behave quite
similarly to intact red cells (Lange et al., 1982).

The simplest picture of this type—consistent with some
(but not necessarily all) experimental findings—is the so-
called bilayer-couple hypothesis of Sheetz and Singer
(1974), which focuses attention on the control parameter
�A0. Thus, adding exogenous phospholipids to the exterior
solution is observed to promote echinocyte formation (Fer-
rell et al., 1985; Christiansson et al., 1985). This is ex-
plained in the bilayer-couple picture by arguing that such
addition is expected to produce an area increase in the outer
leaflet only, as phospholipids do not readily flip-flop from
one leaflet to the other. This increases the area difference
�A0 and is expected to promote echinocyte formation. Sim-
ilarly, cholesterol does equilibrate across the bilayer but
apparently prefers the outer leaflet, presumably because of
the particular lipids there present. Thus, adding cholesterol

will tend to increase �A0 and promote echinocytosis,
whereas depleting cholesterol will tend to decrease �A0 and
to promote stomatocytosis (Lange and Slayton, 1982). More
generally, anionic amphipaths all tend to produce echino-
cytes, whereas cationic amphipaths tend to produce sto-
matocytes (Deuticke, 1968; Weed and Chailley, 1973;
Mohandas and Feo, 1975; Smith et al., 1982). The bilayer-
couple explanation of these observations is that, when
incorporated into the plasma membrane, the cationic com-
pounds segregate preferentially to the inner leaflet and the
anionic compounds, to the outer leaflet because of the
predominantly negative charge of the inner-leaflet lipids.
Outer-leaflet segregation increases �A0, thus promoting
echinocytosis; conversely, inner-leaflet segregation pro-
motes stomatocytosis. Time-dependent effects have even
been seen, where a molecule initially intercalates into the
outer leaflet, causing echinocytosis, but then slowly mi-
grates to the inner leaflet, following the electrostatic gradi-
ent, causing return to the discocyte and subsequent stomato-
cytosis (Isomaa et al., 1987).

A similar hypothesis is made to explain the observed
tendency of ghosts to become echinocytes at high salt
concentrations but stomatocytes at low salt concentrations
(Lange et al., 1982). The argument relies on electrostatics.
Cationic species neutralize the negative lipid charges on the
inner leaflet and salt decreases the Debye length, more
effectively screening such charges. Both effects lead to a
contraction of the inner leaflet and consequent increase in
�A0, promoting crenation.

Other observations can be linked to the bilayer-couple
effect but somewhat less directly. Thus, it is found that
hemolyzed echinocytes produce discocytic ghosts (Lange et
al., 1982) and that electroporation suppresses shape changes
(Schwarz et al., 1999a,b). To explain these effects, it is
argued that hemolysis and electroporation both involve per-
foration of the membrane and resulting in contact via the
pore surface between the lipids in the inner and outer
leaflets. This provides a mechanism for lipid transport that
may reduce the magnitude of �A0 by partial symmetrization
of the lipid composition of the leaflets, thus (equivalently)
reducing C0. Similarly, it is known that ATP depletion
drives discocytes to crenate (Nakao et al., 1960, 1961, 1962;
Backman, 1986). The hypothesis here is that ATP is re-
quired in some way to maintain the lipid asymmetry of the
leaflets (related to C0), perhaps for the operation of ATP-
driven translocases (Steck, 1989).

Some effects are not readily explained by the bilayer-
couple mechanism. Weed and Chailley (1972) and Gedde et
al. (1995, 1997a,b, 1999) report that RBC shape can be
controlled experimentally by varying the external pH with
high pH promoting echinocyte formation and low pH, sto-
matocyte formation (the effect of proximity to a glass sur-
face in promoting echinocytosis (Furchgott and Ponder,
1940) is probably related to this effect). The mechanism for
this effect does not seem to be well established. Some
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authors argue for a mechanism involving membrane pro-
teins. Band 3 has been specifically implicated (Gimsa and
Ried, 1995; Jay, 1996; Gimsa, 1998; Hägerstrand et al.,
2000). For example, it is known that high pH induces
dissociation of ankyrin and band 3, which plays a role in the
linkage of the membrane skeleton to the bilayer (Low et al.,
1991). Indeed, it was shown that in vitro the membrane
skeleton expands at high pH and contracts at low pH (Elg-
saeter et al., 1986; Stokke et al., 1986). It has recently been
proposed that pH change may induce conformational trans-
formation in band 3 protein, leading to a change in �A0.
Similarly, Wong (1994, 1999) has proposed that the folding
of the spectrin in the cytoskeletal net is controlled by a
conformational change of the band 3 protein. Such mecha-
nisms might shift the emphasis of shape determination from
the dominantly lipid-related control parameters, C0 and
�A0, to the elastic parameters and the relaxed shape of the
membrane skeleton. We shall comment briefly on these
issues in the Discussion section.

Numerous shape calculations have previously been done
using variants of the model we describe in The Model. Early
calculations (Fung and Tong, 1968; Zarda et al., 1977;
Evans and Skalak, 1980) omitted the ADE term (�� � 0), set
C0 � 0, and concentrated entirely on the shape of the resting
discocyte and the modifications caused by osmotic swell-
ing. They solved numerically the full mechanical shape
equations. Landman (1984) treated a viscoelastic shell sur-
rounding a viscous droplet and modeled the formation of
protrusions as sudden local addition of shell material.
Waugh (1996) studied a full ADE model with local shear
elasticity (but treating the compressibility modulus as infi-
nite) and studied the instability of a flat membrane to
formation of a local “bump” (axisymmetric spicule) for
positive values of C0 or �A0 or both. He assumed a specific
spicule-shape parametrization, focussed on a single spicule,
calculated its energy, and in this way was able to discuss
generically the conditions under which spicule formation
might become energetically favorable. Most recently, Iglič
and collaborators (Iglič, 1997; Iglič et al., 1998a,b) have
used the same model as Waugh (1996) but parametrize the
spicule more simply, using a hemispherical cap on a cylin-
drical body and joining this to a spherical surface via a base
shaped like a toroidal section. They correctly identify the
emergence of echinocyte shapes as a competition between
the bending energy and the skeletal elasticity. They model
the echinocyte as a collection of ns spicules attached to a
spherical body and then determine the radius of the sphere,
the parameters of the spicules, and the preferred number of
spicules by minimizing the mechanical energy subject to
constraints on cell area and volume. In this way, they are
able to estimate the expected number of spicules and their
shape as a function of the relaxed area difference �A0.

The present paper builds on the work of Waugh (1996)
and Iglič (1997, 1998a,b). We extend the model to include
the area modulus K� of the membrane skeleton. We calcu-

late spicule shape for the first time from the Euler-Lagrange
equations (these calculations are closely related to the ear-
lier work of Zarda et al. (1977)). Although we continue with
Iglič et al. (1998a,b) to treat the echinocyte as a sphere
decorated with spicules, we deal seriously (although still
approximately) with the mechanical boundary conditions
that must be met where the spicule joins the sphere.

THE MODEL

The central assumption of our work is that the red blood cell
assumes a shape that minimizes its overall membrane en-
ergy subject to the appropriate constraints. The RBC mem-
brane is a composite of the plasma membrane and the
cytoskeletal network; correspondingly, we take the mem-
brane energy to be a sum of two terms,

F � Fb � Fel, (2)

the bending energy,

Fb �
1
2

�b � dA	C1 � C2 � C0

2 �

��

2
�

AD2 	�A � �A0

2,

(3)

associated with the bilayer and an elastic energy of stretch-
ing and shear,

Fel �
1
2

K� � dA0		1	2 � 1
2 �
�

2 � dA0 �	1

	2
�

	2

	1
� 2� ,

(4)

associated with the skeleton. In doing this, we treat the
plasma membrane as incompressible. An estimate of its
stretching modulus is K�

(bilayer) � 10�1 J/m2, comparable
with that of a pure-phospholipid bilayer and some four
orders of magnitude larger than that of the skeleton. Corre-
spondingly, we ignore any bending rigidity associated with
the isolated membrane skeleton (the dimensional estimate
�b

(skeleton) � K� � (thickness)2 leaves it two orders of
magnitude smaller than that of the bilayer).

Eq. 3 for the plasma membrane’s contribution to the
overall membrane energy is the now-standard ADE Ham-
iltonian (Svetina et al., 1985; Božič et al., 1992; Wiese et
al., 1992; Miao et al., 1994). The first term was originally
proposed by Helfrich (Helfrich, 1973; Deuling and Helfrich,
1976). C1 and C2 are the two local principal curvatures, C0

is the spontaneous curvature, and the integral is over the
membrane surface. The two leaflets of a closed bilayer of
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fixed interleaflet separation D are required by geometry to
differ in area by an amount,

�A � D � dA	C1 � C2
. (5)

In calculations, we shall take D � 3 nm, corresponding to
the distance between the neutral surfaces of the leaflets. The
second term in Eq. 3 is the so-called area-difference-elas-
ticity energy and represents the cost in stretching (or com-
pressional) energy of the individual leaflets necessary to
force the change from the relaxed area difference �A0 so as
to conform to this geometric requirement. This effect occurs
because a strong hydrophobic barrier prevents lipids in one
leaflet from “flip-flopping” passively to the other on the
time scales of mechanical shape changes. A is the area of the
plasma membrane. The modulus �� associated with the ADE
term is generically of the same scale as �b. Note, finally,
that we can substitute Eq. 5 to rewrite Eq. 3,

Fb �
1
2

�b �� dA	C1 � C2

2 �

��

A �� dA	C1 � C2
�2

� 2C� 0 � dA	C1 � C2
� � const., (6)

in which

C� 0 � C0 �
���A0

DA
, (7)

� � �� /�b, and the constant term is shape independent. This
shows that, in determining minimal shapes at given values
of the control parameters, C0 and �A0 do not enter inde-
pendently but only in the form of an effective spontaneous
curvature �C0 or, equivalently, an effective relaxed area
difference,

�A0 � �A0 �
DAC0

��
, (8)

which we shall often quote in the dimensionless, reduced
form

�a0 �
�A0

A
� �a0 �

DC0

��
. (9)

Note for future reference that increasing �a0 by 0.01 is
equivalent to increasing C0 by 6.7 �m�1.

Eq. 4 measures the elastic-energy cost of the spectrin
network. It depends both on the relaxed shape of the mem-
brane skeleton and on the way it is actually distributed over
the membrane surface. (The notion of a relaxed shape is, of
course, somewhat nominal, because removing the skeleton
from the plasma membrane—which can certainly be done
(Sheetz, 1979)—would radically change its local biochem-

ical environment, in a way which would modify its shape
and elastic constants). In this redistribution, each element of
the network will be stretched or compressed. The quantities
	1 and 	2 are the local principal extension ratios of each
membrane element (Evans and Skalak, 1980). K� and � are
the (two-dimensional) moduli for stretch and shear, respec-
tively, as introduced in the Introduction, and the integrals
are over the undeformed shape. In writing Eq. 4, we are
assuming, as appears to be typical, that the membrane
skeleton does not plastically deform in the course of the
experimental shape transformation being described. Note
that Eq. 4 makes a particular choice of terms in the elasticity
beyond those quadratic in the weak-deformation parame-
ters, 
i � 	i � 1. For the large elastic strains, which are
present at narrow necks and for small spicules, these non-
linearities do play a role. As far as we are aware, RBC
elasticity has not been measured well enough to produce a
clear preference for a particular form of the nonlinearities.
Various authors have used Eq. 4 for the elastic energy in
other contexts with apparent success; however, alternative
forms of the elasticity have also been proposed for dealing
with problems involving large local deformations (Evans
and Skalak, 1980; Discher et al., 1994). We shall make
some additional comments in the Discussion.

One attractive feature of Eq. 4 is that the effect of
changing the size of the relaxed membrane skeleton by a
pure, uniform dilation is particularly simple. Suppose that
the skeleton is decreased in linear scale by a factor b. This
means that undeformed areas are reduced by a factor 1/b2,
whereas the extension ratios 	1,2 are each increased by a
factor b. Note that the integrand of the shear term in Eq. 4
is invariant under this change but the factor 	1	2 in the
stretching integrand increases by b2. Only the quadratic part
of the stretching term influences the membrane shape be-
cause �dA0	1	2 is just the membrane area A, which is fixed
by the incompressibility of the plasma membrane. It follows
that the effect of decreasing the size of the skeleton is
completely equivalent to keeping the size fixed but, instead,
changing the elastic moduli according to

K�� � b2K� (10)

�� � b�2�, (11)

i.e., this “prestress” in the membrane skeleton is completely
equivalent to no prestress, a harder stretching modulus, and
a softer shear modulus. It is not known with certainty what
“prestress” exists in the typical RBC skeleton. Computer
simulation has suggested that the relaxed skeleton may be as
much as 10 to 20% smaller in area than the plasma mem-
brane (Boal, 1994). On the other hand, the experiment by
Svoboda et al. (1992) shows that isolated skeletons are
expanded. In our calculations, we shall assume zero net
prestress (relaxed skeletal area equal to RBC area, i.e., � 

A/A0 � 1). Any deviation from this would result in modi-
fied, effective elastic constants according to Eqs. 10 and 11.
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In our calculations, we will identify shapes that are min-
ima of the (free) energy defined by Eqs. 2 through 4 subject
to constraints of fixed membrane area A (bilayer incom-
pressibility) and volume V (as the RBC volume is typically
set by osmotic balance). Constrained minimization is
achieved variationally by introducing the functional,

�	�, P
 � F � �A � PV, (12)

in which � and P are Lagrange multipliers used to enforce
the surface-area and volume constraints. P is the pressure
difference across the bilayer, whereas � has the dimension
of a surface tension. Making � stationary with respect to
variations of membrane shape and cytoskeletal distribution
leads to a set of coupled Euler-Lagrange equations. These
equations can then be solved to give the shapes of mechan-
ical equilibrium. In principle, such shapes are expected to
correspond to observed equilibrium shapes at temperature
T � 0 only; however, because the energy scale �b is large
on the scale of kBT, thermal fluctuations are generally
negligible and play an important role only for “soft” modes,
especially near instabilities (Wortis et al., 1997). The Euler-
Lagrange equations are in general nonlinear and can have
multiple solutions. The lowest-energy solution for given A
and V is automatically stable to small fluctuations; higher-
energy solutions must be tested for stability. All local-
minimum solutions are candidates for stable observable
shapes, except in exceptional cases (near instability) where
energy barriers become comparable to kBT.

The stable shapes produced by this process depend on the
control parameters: the geometrical parameters, A and V; the
determinants of curvature, C0 and �A0, which only enter in
the combination found in Eq. 7 or equivalently, Eqs. 8 and
9, the moduli, �, �� , K�, and �; plus, finally, any parameters
required to characterize the relaxed shape of the membrane
skeleton. The area and volume of a typical RBC we take as
(Bessis, 1973) A � 140 �m2 and V � 90 �m3. The moduli,
given in the Introduction, are less well determined by ex-
periment (we shall have more to say on this point in the
Discussion Section). This leaves as unknown control pa-
rameters the curvature variables and the cytoskeletal param-
eters.

The Euler-Lagrange variational equations derived from
(12) are not numerically tractable except in the case of
axisymmetry, which clearly does not apply to echinocytic
shapes. In this paper, we aim to treat only fully developed
echinocytic shapes (echinocyte III). For this case, individual
spicules are identical and axisymmetric in shape to a good
approximation and, in addition, the central body, which they
decorate is approximately spherical with radius R0. The
observed distribution of spicules is rather regular, and we
shall approximate the local spicule packing as a triangular
array (except for special numbers of spicules, there must, of
course, be some defects), which will look increasingly like
an hexagonal close-packed structure, as the number of spi-
cules, ns, becomes large.

The base of each individual spicule, where it meets the
sphere tangentially, is a circular contour L of radius rL. If �L

is the angle subtended by L at the center of the sphere, then

rL � R0 sin �L. (13)

Because of the close-packed structure, the circles L meet
tangentially. We explain in the Theory section how to derive
appropriate boundary conditions where the spicules meet
the sphere. Solving the axisymmetric Euler-Lagrange equa-
tions then determines a spicule shape, including an individ-
ual spicule volume Vs and area As. In terms of these vari-
ables, the overall area and volume of the RBC are taken to
be

A � nAs � 0.1 
 4�R0
2 (14)

and

V �
4�

3
R0

3 � nVs, (15)

with the spicule number

ns � 3.6 
 �R0

rL
�2

. (16)

In writing these relations, we have assumed that 10% of the
spherical surface is not covered by the circular spicule bases
(close packing on a flat surface would give 9.3%; curvature
effects and packing defects both increase this number). The
spicule volume Vs is calculated with respect to a plane
through L, and Eq. 15 neglects curvature corrections. These
approximations are good when the number of spicules is
large, as it will turn out to be for the echinocyte shapes.

THEORY

Membrane mechanics

In our treatment, spicules are assumed to be axisymmetric,
and individual spicules are joined to the central body along
the contour L, as illustrated in Fig. 2. Thus, our calculation
involves finding a family of energy-minimizing axisymmet-
ric spicule shapes and selecting from that family those
shapes consistent with appropriate mechanical boundary
conditions applied along L.

Parametrization of the axisymmetric spicule shape is il-
lustrated in Fig. 2. The variables z and r measure distances
along and perpendicular to the symmetry axis, respectively,
whereas s measures the arclength from the pole. The func-
tion z(r) determines the shape. � is the angle between the
local normal and the symmetry axis; Cm(r), Cp(r) are the
principal curvatures,

Cm �
d�

ds
and Cp �

sin �

r
. (17)

In calculating the spicule shape, we shall assume that the
relaxed cytoskeleton is locally flat, a good approximation as
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long as the number of spicules is large, so that the spicule
size is small compared with R0. Thus, in forming each
spicule, a flat circular patch of relaxed cytoskeleton must be
elastically deformed to fit the spicule contour. We assume
that this deformation is axisymmetric, so that the center of
the patch remains at the apex of the spicule, and each point
of the patch at relaxed radius s0 maps to a point at arclength
s and radius r on the spicule contour. The principal exten-
sion ratios can then be written,

	1 �
r

s0
, 	2 �

ds

ds0
. (18)

When these expressions for 	1 and 	2 are inserted into Eq.
4 we obtain an explicit form for the elastic energy in terms
of the functions s0(s) and r(s),

Fel � �K� � s0ds0� r

s0

ds

ds0
� 1�2

� �� � s0ds0� r

s0

ds0

ds
�

s0

r

ds

ds0
� 2� (19)

Using Eqs. 2, 3, 17, and 19, we can implement the
stationarity condition for the free-energy functional (12)
with respect to variations of membrane shape and cytoskel-
etal strain. This leads to a set of five coupled first-order
differential equations, which are written down explicitly in
the Appendix. Note that the ADE term in Eq. 3 enters only

through the appearance of an effective spontaneous curva-
ture

C 0
eff � C0 �

��

DA
	�A � �A0
, (20)

which must be determined self-consistently via Eq. 5. Al-
though these Euler-Lagrange equations look complicated,
they can be related to simple mechanical force-balance
conditions in a way that makes their content entirely trans-
parent (Mukhopadhyay and Wortis, in preparation). We
have used these equations to calculate (approximate) spicule
shapes.

We now turn to the boundary condition where the spi-
cules meet the sphere (see Fig. 2). Along each element of L,
the spicule membrane exerts a tension �	 in the plane of the
membrane and perpendicular to L, and a tension �� normal
to the plane of the membrane. There is no tension in the
third (“shear”) direction because of the membrane fluidity.
In addition, the membrane skeleton exerts an independent
tension that must be in-plane, because the skeleton lacks
bending rigidity. In general, these tensions would be differ-
ent at different points of L; however, in the axisymmetric
approximation, the tensions are uniform around L and the
skeletal tension is directed radially. To maintain mechanical
equilibrium, these tensions must balance where the spicules
meet at point A. Note that A is a point of bilateral symmetry
between the two adjacent spicules, so that in-plane tensions,
which act in opposite directions, always balance by sym-
metry. On the other hand, the normal tensions �� must
vanish individually, as they act in the same direction. The
normal tension is related to the isotropic bending moment
per unit length,

M � �b	Cp � Cm � C 0
eff
, (21)

by (Evans and Skalak, 1980; Mukhopadhyay and Wortis, in
preparation) �� � dM/ds. Thus, an appropriate boundary
condition along L is

d	Cp � Cm


ds
� 0. (22)

This is the boundary condition that we shall apply in our
calculations. Of course, this boundary condition is approx-
imate, because the real spicule is only approximately axi-
symmetric. Indeed, with equal logic, we could argue by
symmetry that �� should vanish at point B, where three
adjacent spicules meet at a radius from the spicule axis
some 15% larger than rL. We shall use this observation in
the Results to get a rough measure of the error introduced by
the approximation (22).

We now outline the algorithm used to solve numerically
the Euler-Lagrange equations for stationary spiculated
shapes. A “shooting method” was used to integrate the
Euler-Lagrange equations from the apex to the edge of the
spicule, the contour L along which the normal tension ��

FIGURE 2 Parametrization of a single-spicule shape, showing the
boundary L where the spicule joins the spherical central body in construct-
ing the full echinocyte shape. The bases of two adjacent spicules are
sketched in to illustrate the points A of spicule tangency and the point B,
which is symmetrically situated between three neighboring spicules.
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vanishes. The set of solutions can be characterized by five
parameters. Three of them are the global parameters: the
pressure difference P, the Lagrange multiplier �, and the
effective spontaneous curvature C0

eff, Eq. 20. The remaining
two parameters correspond to initial values of variables in
the integration procedure, i.e., the curvature (Cm � Cp) and
the stretching ratios (	1 � 	2) of the cytoskeleton at the
pole. Integrating the Euler-Lagrange equations to a point
where Eq. 22 is satisfied determines rL and �L and, there-
fore, R0 and ns from Eqs. 13 and 16. The initial conditions
may be adjusted iteratively to fit four parameters, A (Eq.
14), V (Eq. 15), �A0 (Eq. 8), and the cytoskeletal stretching
ratio, �, which measures the ratio of the area of the calcu-
lated spicule to that of the corresponding relaxed cytoskel-
etal patch (roughly the same as the ratio of the area of the
full echinocyte to that of the full relaxed membrane skele-
ton, as the corrections in Eq. 14 for the spherical segments
are small). We are left, finally, with a one-parameter family
of mechanical-equilibrium solutions, which we take to be
labeled by the spicule number ns. The predicted equilibrium
configuration is the solution ns

eq, which minimizes the over-
all energy. Of course, for the exact solution, ns is a discrete
variable. Probably, there exists, for given initial conditions,
a set of distinct branches of solutions characterized by
different values of ns and different arrangements of spicules
on the surface, as discussed more fully in the Discussion
section.

Scaling analysis

Before proceeding to solutions, we wish to identify the
important energy and length scales of the problem. Because
we are working at a temperature that is effectively low, one
overall energy scale drops out of the mechanical problem.
We take this scale to be set by the bending modulus �b (�b

and �� are similar in magnitude). There are three length
scales. The first is the overall scale of the RBC, which we
denote R. The second, we may take to be 1/ �C0 from Eq. 7
(which is equivalent to using a length based on �A0, Eq. 8);
alternatively, we can take the second length to be 1/C0

eff,
where C0

eff is the effective spontaneous curvature from Eq.
20 (we assume that �C0 and C0

eff are comparable in magni-
tude). The third length is the elastic length scale �el, Eq. 1.
In general, there may be other length scales associated with
the relaxed cytoskeletal shape; however, we shall assume
that any such lengths are comparable with R. For the RBC,
R �� �el. The length scale 1/ �C0 is a control parameter
whose magnitude can be tuned across the range defined by
R and �el, resulting in the observed RBC shape classes.

The size of the RBC sets the total area and volume in the
problem. Note that the RBC has a relatively smaller volume
for a given surface area than a sphere. If a sphere with the
same surface area has a volume Vsphere, then the ratio of
RBC volume to that of the equivalent sphere defines a
reduced volume, v 
 VRBC/Vsphere. For the RBC, v � 0.6,

significantly less than unity, which allows the RBC to
assume its sequence of distinct nonspherical shapes. In its
usual discocytic phase, the red blood cell is expected to have
a magnitude of 1/ �C0 that is of the order of the red blood cell
dimensions or larger. Tuning �C0 to sufficiently large posi-
tive values generates the sequence of evaginated echino-
cytic shapes; tuning it to sufficiently large negative values
generates the sequence of invaginated stomatocytic shapes.

The significance of the elastic length scale �el is that it
determines how strong the effect of elasticity is for struc-
tures with some characteristic length, say L. To see this, we
imagine rescaling the problem with the energy scale �b and
the length scale L in such a way as to make all the param-
eters appearing in the Euler-Lagrange equations dimension-
less. In this way, we arrive at the rescaled parameters,

��b � 1

P� � PL3/�b

�� � �L2/�b

K�� � K�L2/�b

�� � �L2/�b

C 0
eff� � C 0

effL. (23)

Equivalent rescaling of the variables, C�m � CmL, etc.,
leaves the form of the Euler-Lagrange equations unchanged,
although the parameter values (Eq. 23) vary with L. For
example, suppose L is the echinocyte spicule radius. If L �
�el, then �� is greater than unity, and the elastic terms from
Eq. 2 dominate the bending-energy terms; conversely, if
L � �el, then �� is smaller than one, and the bending-
energy terms dominate. Thus, generically, elasticity is
strong at length scales larger than �el and weak at length
scales smaller than �el. This statement may seem surprising
to those who think of the discocyte as effectively shaped by
bending energy. The key point here is the plasticity of the
membrane skeleton, albeit on time scales much longer than
the induced shape changes we are discussing. If the relaxed
membrane skeleton closely matches the shape preferred by
bending energy alone, then (of course) elastic effects are
small. This is apparently the case for the resting discocyte
(but definitely not for the echinocyte).

A similar scaling argument gives insight into the charac-
teristic spicule size in the echinocyte region. Suppose we let
L � �el in Eq. 23. At this length scale, the bending and
elastic terms (��b, K��, and ��) are comparable and the only
remaining parameters are P�, ��, and C0

eff� (or, equivalently,
�C�0). If, in addition, P� and �� are small, then the Euler-

Lagrange equations are equivalent to those for the uncon-
strained minimization of the combined bending-plus-elastic
problem (2). But, this is a problem that we understand.
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When C0
eff� is small in magnitude, then the membrane

remains flat (at the length scale of �el); on the other hand,
when C0

eff� is large in magnitude, then bending energy
(which dominates the shape at scales below �el) will favor
budded shapes on the scale of 1/C0

eff, either invaginated or
evaginated depending on the sign of C0

eff. Between these
limits, when �el and 1/C0

eff are comparable, we expect
spicules (for positive C0

eff) scaled by 1/C0
eff, tending towards

smoother shapes when �el is somewhat smaller than 1/C0
eff

and towards sharper, more columnar shapes when �el is
somewhat larger than 1/C0

eff. Note that, as long as we rescale
to the length �el, the expected spicule shape is predicted to
be independent of cell size R and to depend only on the
scaled value of C0

eff and the ratio of the two elastic con-
stants, � and K�.

The above argument depends on the condition that the
scaled values of P and � be small at the elastic length scale.
For smooth and flaccid shapes like the discocyte (and when
the cytoskeleton is not significantly stretched or com-
pressed) the pressure difference P is generated by the bend-
ing energy, so P� is of order unity on the scale of the cell
size R, and similarly for ��. It then follows from Eq. 23 that
the condition is well satisfied for the discocyte and other
nearby shapes (as we shall see, the initial echinocyte shapes
fall into this class). Of course, if the system is pushed too
hard, then this condition breaks down and other length
scales enter the spicule-shape problem.

In summary, the shape of a spicule arises as a result of the
interplay between the two length scales, �el and 1/C0

eff.
When 1/C0

eff is positive and much larger than �el, the effect
of elasticity is strong and we can expect spicules that are at
most gentle bumps. It is only when 1/C0

eff becomes of the
order �el or smaller that we may expect sharp spicules.
Thus, if we look at the series of shape transformations, from
discocytes through discocytes with gentle bumps to sharply
spiculated structures, the sharp spicules will first arise with
a radius comparable with �el. We shall verify this scenario
in the next section by explicit solution for the stable shapes.

RESULTS

In this section we report echinocyte shapes calculated ac-
cording to the program outlined in the Theory section and
using the elastic moduli (�b, �� , �, and K�) given in Intro-
duction and the RBC parameters (A and V) given in the
Model section. The cytoskeletal stretching ratio � is not
known to good accuracy for the RBC. In this section, we
take � � 1; however, we have tested values in the range 0.7
to 1.2, and it is one of our results that variation within this
range produces no appreciable changes in the number of
spicules or their shape. The spontaneous curvature and
relaxed area difference are not known and presumably vary
somewhat over a typical RBC population; however, they
enter the mechanics problem only in the combination �a0,
Eq. 9, which we take as our principal control parameter.

Fig. 3 displays the equilibrium spicule shapes that we
obtain for a sequence of values of �a0. Figs. 4 and 5 plot the
corresponding calculated number of spicules ns, which ap-
pear on the fully developed echinocyte III at equilibrium
and the corresponding values of C0

eff as functions of �a0.
How well do the calculated shapes and spicule dimen-

sions agree with experimental observations (Bessis, 1973;

FIGURE 3 Sequence of spicule shapes for increasing values of the
reduced effective relaxed area difference �a�a0, Eq. 9, which measures
the combined effect of spontaneous curvature and additional area in the
outer leaflet in driving the membrane to bend outward. (a–d) Correspond
to �a0 � 0.014, 0.018, 0.020, and 0.022, respectively. Note the bar shows
the elastic length scale �el. Note how the spicule sharpens as �a0 increases
and how the neck begins to form when the spicule dimension (set by 1/C0

eff)
falls below �el so that the bending energy begins to dominate.

FIGURE 4 Calculated equilibrium number of spicules ns plotted as a
function of the reduced effective relaxed area difference �a0.
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Brecher and Bessis, 1972; Chailley et al., 1973). As shown
in Fig. 3, the calculated shapes fall into three distinct cate-
gories. For ns less than �20, corresponding to �a0 appre-
ciably smaller than 0.016, the spicule shapes are broad and
rather hat shaped, rather different from those seen in exper-
iment. As �a0 and C 0

eff increase, the number of spicules
increases and the individual spicules become smaller, just as
predicted by the scaling argument at the end of the previous
section. By the time �a0 is at or above 0.016, for ns in the
range 30–60, the spicule shapes are columnar with rounded
tops, in good general agreement with the kinds of shapes
seen in experiment. Beyond ns � 70, the spicules become
narrow-necked, a shape not typically seen in experiment but
illustrating the dominance of the bending energy, as dis-
cussed in the Theory section.

In the “good,” central region, the spicule dimensions and
numbers are very comparable with those seen in experi-
ment. A typical example (�a0 � 0.018) is shown in Fig. 6 a.

For this case, we find ns � 41, a radius of the central,
spherical body of R0 � 2.57, and an aspect ratio, height over
width at base (which also corresponds approximately to the
distance between adjacent spicules), of �0.8, all of which
are in reasonable agreement with observation. The only
significant discrepancy is that the spicule height is close to
1.0 �m, somewhat larger than the range 0.6 to 0.8 �m seen
in experiment, as is the aspect ratio. We shall comment on
possible reasons for this discrepancy in the Discussion
section. We emphasize that these shapes are a prediction of
the model, not an assumption as they are in other recent
work (Iglič, 1997; Iglič et al., 1998a,b). The only other
spicule-shape predictions are those given by Waugh (1996),
whose calculation suggests cross-sections that are less steep
at the sides and more pointed at the apex than what is
observed. Whether this is a consequence of the variational
form assumed or of the neglect of stretching elasticity in the
model is not clear. The calculations of Iglič et al., based on
a postulated spicule shape and assuming skeletal incom-
pressibility (K� 3 �), produce somewhat higher values of
the aspect ratio. At a given reduced area difference �a0,
they find a spicule number, which is larger than ours by
almost a factor of two. We will return to some of these
issues in the Discussion section.

Before discussing further what we shall argue are the
nonbiological regions of hat-like and narrow-necked
shapes, we must review the full echinocyte sequence (Bre-
cher and Bessis, 1972; Bessis, 1973; Chailley et al., 1973;
Mohandas and Feo, 1975). Experimental observations of
RBCs, which are initially smooth, axisymmetric discocytes
show that echinocytosis occurs in three stages. The first
stage (echinocyte I) corresponds to irregular disc-like
shapes with a central dimple. In the second stage (echino-
cyte II) the irregularities evolve into more or less well-
defined spicules and the central dimple disappears, resulting
in an oblately elliptical body decorated with spicules. In the
third stage (echinocyte III) the central body becomes ap-
proximately spherical and the spicules become somewhat
smaller and more numerous. When pushed beyond the echi-
nocyte III, some kind of disconnection between the plasma
membrane and the membrane skeleton occurs (see below)
and plasma membrane is shed from the spicule tips into
microscopic exovesicles. The remaining spherical shape
with pointed protuberances is called a spheroechinocyte
(Bessis, 1973).

Our calculation explicitly assumes that the central body is
spherical and is, therefore, appropriate only for the late
stage-III echinocyte. What we believe happens is that, for
�a0 � 0.016, the branch of echinocyte III shapes becomes
energetically unstable to a branch of echinocyte II shapes.
There is no internal way that our calculation can show that
this crossover takes place; however, there are two pieces of
evidence we find convincing. The first is a simple estimate.
A separate calculation of the discocyte branch shows that its
shape (and �A, for example) is roughly independent of �a0,

FIGURE 5 Calculated effective spontaneous curvature C0
eff, Eq. 20, plot-

ted as a function of �a0.

FIGURE 6 Calculated spicules at �a0 � 0.018. (a) Shape found in the
axisymmetric approximation, as discussed in this paper (ns � 41, R0 �
2.57 �m). (b) Shape found by numerical minimization on a triangulated
surface (ns � 34, R0 � 2.5 �m).
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allowing us to estimate its energy as a function of �a0. The
calculated energy of our echinocyte III branch is lower than
the discocyte branch but increases as �a0 decreases. The
crossing point of these two branches at �a0 � 0.016 is, thus,
an approximate lower limit to the transition out of the
echinocyte III phase. The actual transition out of the echi-
nocyte III branch must presumably take place at a somewhat
higher value of �a0. The second piece of evidence is that, in
separate work, which we shall report elsewhere (Lim, Wor-
tis, Boal, and Mukhopadhyay, in preparation), we have done
numerical simulations of RBC shapes using the same set of
numerical parameters chosen here, and we find just such a
transition at �a0 � 0.017 from the echinocyte III to a branch
of echinocyte II shapes.

At the opposite end of the range of “good” spicule shapes,
our calculation fails again and, again, for reasons that can-
not be assessed internally. Here the size of the predicted
spicule (set by the scale of 1/C0

eff) becomes comparable with
the length of the elementary spectrin tetramer of the mem-
brane skeleton (Liu et al., 1987). At this length scale, the
continuum picture breaks down for the membrane skeleton
(although it remains valid for the lipid component). What
presumably happens is that a point of instability is reached,
where lipid flow occurs and the plasma membrane buds
outward in regions between the cytoskeletal anchors. Such
buds, lacking cytoskeletal support, are known to be fragile.
They presumably break off, leading to microvesiculation,
membrane loss, and the observed spheroechinocytosis. Nat-
urally, this vesiculation is expected to happen first at the
spicule tips, where the elastic network is maximally ex-
panded and the distance between anchors is largest.

In nature, the plasma membrane and its cytoskeleton are
bound together by protein anchors; in our model this bind-
ing is replaced by the condition that the bilayer and the
elastic network co-exist on the same mathematical surface.
This requirement means that there is a local force per unit
area or pressure Q with which the skeleton pulls inward
(Q � 0) or pushes outward (Q � 0) on the membrane
surface (or, equivalently, with which the membrane pulls
outward or pushes inward, respectively, on the skeleton).
The expression for this pressure is (Mukhopadhyay and
Wortis, in preparation)

Q � Cm�K��r

s

dr

ds
� 1� �

�

2 ��s

r�
2

� �ds

dr�
2��

� Cp�K��r

s

dr

ds
� 1� �

�

2 ��s

r�
2

� �ds

dr�
2�� (24)

and it is plotted in Fig. 7 as a function of the radial distance
r from the spicule axis for �a0 � 0.018. As expected, Q is
positive close to the tip of the spicule and negative around
the neck where the skeleton has been compressed. The
magnitude of the pressure at the spicule tip is of the order of
20 pN/�m2. It is useful to compare this pressure to the

critical disjoining pressure necessary to break the anchoring
and to separate the membrane skeleton from the bilayer.
This critical pressure has not, to the best of our knowledge,
been measured; nevertheless, it can be estimated. We take
10 pN as a crude estimate of the force required to extract
quickly a single anchoring protein from the bilayer. Taking
into account the density of anchors, we estimate a detach-
ment pressure of �2000 pN/�m2 (consistent with measure-
ments reported in Waugh and Bausserman, 1995), two
orders of magnitude larger than what we have calculated
above. This comparison is important, as membrane-cy-
toskeleton disjoining is another potential mechanism for
spheroechinocytosis, an alternative to the one discussed in
the paragraph above and has, indeed, been proposed by Iglič
and others (Iglič et al., 1995, 1996). We conclude that such
direct disjoining seems unlikely, unless it is associated with
anchoring defects.

We have seen for the human erythrocyte that the fully
developed echinocyte III, with well developed spicules, first
appears when 1/C0

eff becomes small enough to be compara-
ble with the elastic length scale �el. It is a plausible hy-
pothesis that this is a general connection. If so, there is a
direct relation between the spicule dimension at the onset of
the echinocyte III and the ratio (Eq. 1) of the bending
rigidity to the elastic moduli. Interestingly, Smith et al.
(1982) have studied spiculated shapes for the red cells of a
variety of species. Despite considerable variation in the
volume of the red cells (ranging from the goat RBC, which
is appreciably smaller than the human one, through the
elephant seal, which is appreciably larger) the spicule size is
quite stable, suggesting that the elastic length scale is not
strongly variable from one species to another. This means,
of course, that the number of spicules on the typical echi-

FIGURE 7 The local pressure Q, Eq. 24, exerted by the cytoskeleton on
the bilayer plotted as a function of radial distance, for a spicule corre-
sponding to �a0 � 0.020.
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nocyte is small for the goat (�10) and large for the elephant
seal (�100), as observed. To illustrate this point further, we
plot in Fig. 8 spicule shapes at different volumes and
different ratios K�/� but with �el held fixed. We find that at
smaller volume, the spicules sizes do become smaller but
the dependence on volume is weak. The dependence on the
ratio of elastic constants K�/� is even weaker. At a value of
K� that is larger by a factor of 2 (K� � 6 �), the spicules
become somewhat broader and their number decreases by
�5%. Of course, the local stretching of the cytoskeleton
both at the spicule apex and in the neck region close to the
base may be expected to change considerably.

These results are based on the model described in the
Theory section, which assumes spicule axisymmetry, as
incorporated in the (approximate) boundary condition, Eq.
22. In closing this section, it may be useful to comment on
the reliability of this central assumption. We have two
remarks. The first concerns the boundary condition. The
neighborhood of a given spicule is clearly not axially sym-
metric, so this condition is clearly approximate. If the cal-
culated shapes depended sensitively on the precise way that
this boundary condition is applied, then results based upon
it would be suspect. We motivated the boundary condition
(�� � 0) by looking at the point labeled A in Fig. 2, where
adjacent spicules are tangent. With equal logic, we could
have argued this boundary condition at the point labeled B.
If we made this choice, how different would the calculated
spicule shapes turn out to be? We have run some test cases
and find changes in, e.g., the spicule height of less than 1%,

suggesting that the results are strongly insensitive to the
details of the boundary condition. But, this is far from
sufficient. As a second test, we have recently completed a
program (Lim, Wortis, Boal, and Mukhopadhyay, in prep-
aration) of direct simulation of the energy functional (2) on
a triangulated surface. This program allows us to calculate
echinocyte shapes without assumptions about spicule axi-
symmetry. We find echinocyte shapes in this region of
parameter space and can compare the simulated spicule
shapes with those calculated here at the same parameter
values. Fig. 6 shows one such comparison. Although the
base of the simulated spicule is a little narrower than that
given by the approximate axisymmetric calculation, the
overall level of agreement is excellent. At these parameter
values, the number of spicules in our calculation is 41,
whereas the number found by simulation is 34. Similarly,
the radius of the central spherical body to which our spi-
cules are fitted is 2.57 �m, whereas that found in the
simulations is �2.5 �m (the central body is only roughly
spherical in this case). The approximate calculation pre-
sented in this paper appears to be reasonably reliable.

DISCUSSION

The calculations presented here build on the previous work
of Iglič et al. (1998a,b; Iglič, 1997) and show that a simple
mechanical model of a uniform composite membrane can
give a good account of observed echinocyte shapes. The
central control parameter in this process is the effective area
difference (or curvature) of the lipid component, in agree-
ment with the bilayer-couple hypothesis of Sheetz and
Singer (1974). The role of the cytoskeletal elasticity is to
suppress the formation of narrow-necked buds, which
would form in the absence of cytoskeletal shear resistance.
Does this good agreement prove that mechanics (as opposed
to biochemistry) is the sole determinant of echinocyte
shape? It does not. However, it does strongly suggest that
simple mechanics will play an important role in any com-
plete picture. We end this section with a brief discussion of
some loose ends and future directions.

Elastic constants and elastic nonlinearities

There has been much discussion in the literature of what are
the “correct” elastic constants to use for the membrane
skeleton. We have chosen � � 2.5 � 10�6 J/m2 and K� �
3 �. These values are in rough agreement with recent
measurements at low deformation (Hénon et al., 1999;
Lenormand et al., 2001) and somewhat lower than those
reported in connection with pipette aspiration of red cells
(Evans, 1973a,b; Waugh and Evans, 1979) where large
deformations play an important role.

Discussion of values of the elastic moduli is complicated
by the occurrence of nonlinearities in the elastic response.

FIGURE 8 Dependence of spicule shape on parameters at �a0 � 0.018.
(a) Shape with the standard RBC parameters, as discussed in the text. (b)
Effect of starting from a and increasing K� by a factor of 2 (i.e., K� � 6
�). The spicules become slightly broader. (c) Effect of reducing overall cell
dimension by a factor of two, so that V3 V/8 and A3 A/4. This change
reduces spicule size by �10%.
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At low deformation, 	i � 1 � 
i with 
i small, there are only
two rotational invariants from which to construct the elastic
energy, 1⁄2(
1 � 
2)2 and 1⁄2(
1 � 
2)2, whose coefficients
define the linear moduli of stretching and shear elasticity. It
is easy to verify that these linear moduli are just K� and �,
respectively. However, at large deformation, terms of
higher orders in (
1 � 
2) and (
1 � 
2)2 will generally also
appear in the elastic energy, each with its own coefficient.
The expression (4) for the elastic energy makes a particular
choice for each of these coefficients, one which is simply
proportional to the linear moduli. At small extension ratios,
these higher-order terms are unimportant; however, for the
echinocyte shapes, we find 
i of order unity, so these terms
cannot be neglected. Unfortunately, present experiments do
not constrain the values of the higher order coefficients
significantly, although it is probably not an accident that the
moduli derived from the pipette aspiration experiments
(Evans, 1973a,b), which have extension ratios up to nearly
2 (Lee et al., 1999), are larger than those measured in the
linear regime (Henon et al., 1999; Lenormand et al., 2001).
This suggests a hardening of the elasticity at large defor-
mation, consistent, for example, with terms in (
1 � 
2)3,
(
1 � 
2)(
1 � 
2)2, and so forth, coming into play. We will
deal with the issue of nonlinearity at more length in a future
publication. For the present, we simply remark that realistic
spicule formation does require a proper balance between
stretching and shear energies at large deformation. Our
chosen ratio of K�/� � 3 suffices; however, a lower ratio
plus some additional nonlinear hardening would also
achieve the same effect and may be more realistic. Any
effect that changes spicule shape significantly may also be
expected to modify quantitatively the regions of stability of
different shape classes.

Previous variational work on echinocyte shapes by Iglič
and coworkers (Iglič, 1997; Iglič et al., 1998a,b) has as-
sumed local incompressibility of the cytoskeleton (K� 3
�), thus forcing all the elastic energy into the shear term.
This was done for practical reasons; we are now in a
position to understand the effect of this approximation. Fig.
8 c suggests that increasing K� at fixed � has a modest
effect on spicule shape, decreasing the height and the base
radius somewhat without changing the mean radius appre-
ciably. This is consistent with the generally larger number
of spicules predicted by Iglič et al. (1998a,b; Iglič, 1997).
Because of the limited shapes available in the variational
parametrization, these authors cannot follow the full spi-
cule-shape evolution exhibited in our Fig. 3.

Spicule placement, metastability, and
related matters

Our calculation assumes for the echinocyte regular spicule
placement with sixfold coordination on a central spherical
body. Of course, this is only an approximation. First, there
is the topological requirement for a net undercoordination of

12. More generally, if the energy minimization problem
were to be solved exactly, we would expect to find several
distinct sheets of locally minimizing shapes with different
spicule numbers ns and different spicule organization. For
any given set of parameter values, one such shape would
have the lowest energy; however, several others might have
nearby energies. Metastability of a shape would be ex-
pected, because the energy landscape is on the scale of �b,
which is large on the scale of kBTroom. This metastability, in
turn, would cause hysteresis in the shape transformations.

Some experiments show that, as the red cell is chemically
cycled back and forth between discocyte and echinocyte
phases, spicules always appear at the same locations on the
cell surface (Furchgott, 1940; Bessis and Prenant, 1972),
suggesting that spicule placement could be intrinsically
related to defects and other inhomogeneities in the cytoskel-
eton. This would not happen in a continuum model. Without
wishing to dispute the experimental evidence, we can only
say that our work shows that spicule formation does not
require cytoskeletal inhomogeneity. Of course, if inhomo-
geneities exist, then they will have an effect in selecting the
pattern of spicule placement.

It is not clear a priori whether or not the spicule is a
solitonic object with its own intrinsic scale and, if so,
whether spicules tend to attract or repel at long distance.
Some recent work (Lim, Wortis, Boal, and Mukhopadhyay,
in preparation) has suggested long-range attraction, which
would mean that, under appropriate circumstances, spicule
clumping might occur, leaving “bald” regions on the echi-
nocyte surface, as is seen in some pictures of echinocyte
shapes (see, for example, Iglič et al., 1998a). None of this
finer detail is captured in our approximation.

Extended shape/phase diagram

We have focussed on the spontaneous curvature or area
difference �a0 as the principal parameter controlling the
evolution of echinocyte shape. Of course, induced changes
in any parameter of the membrane energy expression Eqs. 2
to 4 and the constraints V and A, singly or in combination,
will affect the cell shape. A (bio)chemical modification of
the red-cell environment presumably changes all these pa-
rameters to some extent; it is just that some changes are
larger and more important than others. If there are situations
in which laboratory reagents cause important modification
in other parameters (e.g., the elastic constants) then addition
of these reagents will cause the red cell to be driven along
a trajectory in an extended parameter space. In such a
situation, we would need to consider the minimum-energy
shape (or shapes) as functions of several variables in an
extended shape/phase diagram. The work surrounding Fig.
8 illustrates the beginning of such a study.

We have summarized in the Introduction the mechanism
by which some common reagents affect the Sheetz-Singer
(1974) parameter �a0. The pH effect and the associated
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glass effect are less readily related to �a0 but may well be
primarily related to another dimension of the generalized
phase diagram. For example, Gedde et al. (1995) have
shown that lipid asymmetry and the presence of inner leaflet
titratable groups, which might be expected to be associated
with �a0, do not have appreciable influence on the pH
effect; however, Elgsaeter et al. (1986) and Stokke et al.
(1986) have shown that the membrane skeleton expands in
vitro in response to high cytoplasmic pH. Now, according to
the scaling argument (Eq. 11), we know that such expansion
is equivalent to decreasing the shear modulus � and, there-
fore, to increasing the elastic length scale �el (1). But,
echinocytosis occurs when 1/C0

eff shrinks below �el. Thus,
at fixed C0

eff (roughly equivalent to fixed �a0), expanding
the membrane skeleton could promote echinocytosis, as
observed. It would be premature to claim that this is the full
explanation of the pH effect. The point is that, as long as
changes in biochemical variables produce homogeneous
changes in the material parameters that appear in Eqs. 2
through 4, our model continues to apply, although the
relevant experimental trajectories may be in a larger param-
eter space.

Membrane composition, inhomogeneity, and
charge effects

Description of any effects that lead to inhomogeneity in
membrane properties requires modification of our model.
One such effect that is certainly present arises from the
inhomogeneous distribution of lipids and/or proteins. We
know that the plasma membrane is composed of a mixture
of lipids and proteins. The bending modulus �b depends on
membrane composition. As long as the composition re-
mains homogeneous, the model Eqs. 2 to 4 holds; but, any
mechanism that produces compositional inhomogeneity on
the scale of RBC shape features would necessitate modifi-
cation of the model. Thus, for example, observed raft for-
mation (Simons and Toomre, 2000; Pralle et al., 2000)
suggests membrane inhomogeneity on the scale of 0.05 to
0.07 �m. When local radii of curvature become comparable
with the inhomogeneity scale, then inhomogeneity is ex-
pected to influence shape. This may occur for the echino-
cyte near the spheroechinocyte limit; however, there is no
evidence that it is a dominant effect elsewhere.

Other interesting effects involve the coupling of lipid
composition to geometry. Thus, for example, outer-leaflet
lipids with large heads may be expected to segregate pref-
erentially to spicule tips as would inner-leaflet lipids with
large tails. Such an effect could be included in a mechanical
model by adding a composition field (or fields) and includ-
ing terms coupling composition to curvature. Alternatively,
one might imagine mechanisms involving membrane com-
ponents that preferentially favor (or avoid) regions around
the cytoskeletal anchoring complexes. These components
would be relatively dilute (concentrated) in regions where

the cytoskeleton was significantly expanded (as it is near the
spicule tip). To represent this effect, one would need to
couple composition to local cytoskeletal strain.

Whereas these mechanisms may be present to some ex-
tent in the red cell, our calculations suggest they are not in
any way required for spicule formation.

Finally, chemical groups that carry net charge at physio-
logical pH are common both for lipid headgroups and for
cytoskeletal components. As long as these charges are com-
pensated by counterions on scales smaller than the local
radii of curvature, they enter the mechanics only via their
effect on the mechanical moduli. On the other hand, when
relevant lengths become comparable with or smaller than
the Debye length, then charge effects must be treated as
nonlocal.

Conclusions

Our calculation provides echinocyte sizes and shapes in
excellent agreement with experiment. Although shapes are
calculated under the approximation of spicule axisymmetry,
there is evidence (e.g., Fig. 6) that this approximation is
good. The approximation does not allow us to estimate
internally the range of echinocyte III stability; however,
extrinsic arguments (see Results) suggest that observable
shapes should be bounded at low �a0 in the region where
1/C0

eff first becomes smaller than �el and at large �a0 in the
region where the spicule dimension becomes comparable
with the cytoskeletal discreteness. And, indeed, outside this
region the predicted shapes are no longer seen experimen-
tally. Whereas this consistency lends credibility to the con-
tinuum picture, the way in which biochemical influences
drive the control parameters of the model is not addressed.
The Sheetz-Singer parameter, �a0, which measures the area
difference between the lipid monolayers (and the related
effect of membrane spontaneous curvature) does seem to be
the dominant control parameter for some kinds of induced
shape change. On the other hand, other effects (such as the
pH effect) may probe other dimensions of the shape/phase
diagram, e.g., the role of the cytoskeletal elastic constants
and prestress. We hope that having a mechanical model with
predictive power may eventually help to elucidate important
biochemical questions. From this perspective, experiments
can now focus on the way in which biochemical probes
affect all the mechanical control parameters, including elas-
tic and cytoskeletal variables, in addition to �a0.

APPENDIX A

Euler-Lagrange Equations

In this Appendix we demonstrate how the Euler-Lagrange equations for the
membrane arise from the constrained minimization of the free energy Eqs.
2 to 4. For simplicity, we shall omit the second (ADE) term in Eq. 3. The
effect of including this term is simply to convert the spontaneous curvature
C0 into the effective spontaneous curvature C� 0 defined by Eq. 7. Following
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Peterson (1985), we use the arc length s as the parametrization variable and
compose the free-energy functional,

���, P, b	s
� � F � �A � PV

� � �
0

s�

dsb	s
�dr

ds
� cos ��

� � �
0

s�

ds�	s, s0, r, �, b


� � � ds
s0

ds0

ds �K�� r

s0

ds

ds0
� 1�2

� �� r

s0

ds0

ds
�

s0

r

ds

ds0
� 2��

� r�b�d�

ds
�

sin �

r
� C0�2

� 2�r � Pr2 cos �

� b	s
�dr

ds
� cos �� , (A1)

in which s� is the overall arc length and the last term was introduced to
impose the local constraint dr/ds � cos �. The function b(s) is a “Lagrange-
multiplier function,” which enforces this constraint. We now treat the
variables s0, r, �, and b as independent functions of the arc length s. Making
the free-energy functional (Eq. A1) stationary against arbitrary variations
of b, �, and r leads, respectively, to the equations,

dr

ds
� cos � (A2)

dCm

ds
�

cos � sin �

r
�

Cm cos �

r
�

Pr cos �

2�b
�

b sin �

2r�b

(A3)

db

ds
� 2K�� ds

ds0

r

s0
� 1� � �s0

ds0

ds �1
s0

ds0

ds
�

s

r2

ds

ds0
�

� 	2� � �bC0
2
 � �b�Cm

2 � 2C0Cm � Cp
2�

� 2Pr sin �, (A4)

in which Cm 
 d�/ds. In addition, because the integrand � in Eq. A1 has
no explicit dependence on s, the “Hamiltonian function,”

�	s
 � ṡ0

d�

dṡ0
� ṙ

d�

dṙ
� �̇

d�

d�̇
� �, (A5)

(in which, for example, ṡ0 
 ds0/ds) is conserved, i.e., independent of s. It
is easy to show that, for the variables to be well behaved close to the north

pole (s � 0), in which r � 0, � has to vanish at s � 0, implying that �
is identically zero along the entire shape contour. Therefore,

2K�r� ds

ds0

r

s0
� 1� � �s0�s0

r
�

r

s0
�ds0

ds �
2�

� r	2� � �bC0
2
 � �br�Cp

2 � 2C0Cp � Cm
2 �

� b	s
 cos � � Pr2 sin � � �� � 0. (A6)

Making Eq. A1 stationary with respect to variations of s0 leads to an
equation equivalent to the derivative of Eq. A6 with respect to s and is not
an independent condition.

Eqs. A2 through A4 plus Eq. A6 constitute the full set of Euler-
Lagrange equations. The surface tension � in these equations is, in general,
shifted from the parameter � appearing in Eq. 12. If K� and � are set to
zero in these equations, the well-known Euler-Lagrange equations for
axisymmetric shapes of bilayer vesicles with no cytoskeleton reemerge. A
final technical point is axisymmetric vesicle forms such as cylinders, which
do not close smoothly at the poles are described by the same equations only
with a value of the conserved Hamiltonian �, which is consistent with the
boundary conditions and does not generally vanish.
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Iglič, A., S. Svetina, and B. Žekš. 1995. Depletion of membrane skeleton
in red blood cell vesicles. Biophys. J. 69:274–279.
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