2,229 research outputs found
Mesoscopic Rydberg Gate based on Electromagnetically Induced Transparency
We demonstrate theoretically a parallelized C-NOT gate which allows to
entangle a mesoscopic ensemble of atoms with a single control atom in a single
step, with high fidelity and on a microsecond timescale. Our scheme relies on
the strong and long-ranged interaction between Rydberg atoms triggering
Electromagnetically Induced Transparency (EIT). By this we can robustly
implement a conditional transfer of all ensemble atoms among two logical
states, depending on the state of the control atom. We outline a many body
interferometer which allows a comparison of two many-body quantum states by
performing a measurement of the control atom.Comment: published versio
Quantum critical behavior in strongly interacting Rydberg gases
We study the appearance of correlated many-body phenomena in an ensemble of
atoms driven resonantly into a strongly interacting Rydberg state. The ground
state of the Hamiltonian describing the driven system exhibits a second order
quantum phase transition. We derive the critical theory for the quantum phase
transition and show that it describes the properties of the driven Rydberg
system in the saturated regime. We find that the suppression of Rydberg
excitations known as blockade phenomena exhibits an algebraic scaling law with
a universal exponent.Comment: 4 pages, 3 figures, published versio
Cavity-induced temperature control of a two-level system
We consider a two-level atom interacting with a single mode of the
electromagnetic field in a cavity within the Jaynes-Cummings model. Initially,
the atom is thermal while the cavity is in a coherent state. The atom interacts
with the cavity field for a fixed time. After removing the atom from the cavity
and applying a laser pulse the atom will be in a thermal state again. Depending
on the interaction time with the cavity field the final temperature can be
varied over a large range. We discuss how this method can be used to cool the
internal degrees of freedom of atoms and create heat baths suitable for
studying thermodynamics at the nanoscale
Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data
The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin
Local effective dynamics of quantum systems: A generalized approach to work and heat
By computing the local energy expectation values with respect to some local
measurement basis we show that for any quantum system there are two
fundamentally different contributions: changes in energy that do not alter the
local von Neumann entropy and changes that do. We identify the former as work
and the latter as heat. Since our derivation makes no assumptions on the system
Hamiltonian or its state, the result is valid even for states arbitrarily far
from equilibrium. Examples are discussed ranging from the classical limit to
purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density
operator do not commute.Comment: 5 pages, 1 figure, published versio
Heat flux operator, current conservation and the formal Fourier's law
By revisiting previous definitions of the heat current operator, we show that
one can define a heat current operator that satisfies the continuity equation
for a general Hamiltonian in one dimension. This expression is useful for
studying electronic, phononic and photonic energy flow in linear systems and in
hybrid structures. The definition allows us to deduce the necessary conditions
that result in current conservation for general-statistics systems. The
discrete form of the Fourier's Law of heat conduction naturally emerges in the
present definition
Coverage-dependent adsorption sites in the K/Ru(0001) system: a low-energy electron-diffraction analysis
The two ordered phases p(2 × 2) at a coverage θ = 0.25 and (√3 × √3)R30° at θ = 0.33 of potassium adsorbed on Ru(0001) were analyzed by use of low-energy electron-diffraction (LEED). In the (√3 × √3)R30° phase, the K atoms occupy threefold hcp sites, while in the p(2 × 2) phase the fcc site is favoured. In both phases, the K hard-sphere radii are nearly the same and close to the covalent Pauling radius
Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap
We explore how the extraordinary properties of Rydberg atoms can be employed
to impact the motion of ultracold ground state atoms. Specifically, we use an
off-resonant two-photon laser dressing to map features of the Rydberg states on
ground state atoms. It is demonstrated that the interplay between the spatially
varying quantization axis of the considered Ioffe-Pritchard field and the fixed
polarizations of the laser transitions provides the possibility of
substantially manipulating the ground state trapping potential.Comment: 11 pages, 4 figure
- …
