40,590 research outputs found
Thermal acoustic oscillations, volume 2
A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions
The Effects of Rotation on the Evolution of Rising Omega-loops in a Stratified Model Convection Zone
We present three-dimensional MHD simulations of buoyant magnetic flux tubes
that rise through a stratified model convection zone in the presence of solar
rotation. The equations of MHD are solved in the anelastic approximation, and
the results are used to determine the effects of solar rotation on the dynamic
evolution an Omega-loop. We find that the Coriolis force significantly
suppresses the degree of fragmentation at the apex of the loop during its
ascent toward the photosphere. If the initial axial field strength of the tube
is reduced, then, in the absence of forces due to convective motions, the
degree of apex fragmentation is also reduced. We show that the Coriolis force
slows the rise of the tube, and induces a retrograde flow in both the
magnetized and unmagnetized plasma of an emerging active region.
Observationally, we predict that this flow will appear to originate at the
leading polarity, and will terminate at the trailing polarity.Comment: 25 pages, 8 figures, ApJ in pres
Recommended from our members
Twin roll casting and melt conditioned twin-roll casting of magnesium alloys
Recently, BCAST at Brunel University has developed a MCAST (melt conditioning by advanced shear technology) process for conditioning liquid metal at temperature either above or bellow the alloy liquidus using a high shear twin-screw mechanism. The MCAST process has now been combined with the twin roll casting (TRC) process to form an innovative technology, namely, the melt conditioned twin roll casting (MC-TRC) process for casting Al-alloy and Mg-alloy strips. During the MC-TRC process, liquid alloy with a specified temperature is continuously fed into the MCAST machine. By intensive shearing under the high shear rate and high intensity of turbulence, the liquid is transformed into conditioned melt with uniform temperature and composition throughout the whole volume. The conditioned melt is then fed continuously into the twin-roll caster for strip production. The experimental results show that the AZ91D MC-TRC strips with different thicknesses have fine and uniform microstructure. The strip consists of equiaxed grains with a mean size of 60-70μm. The strip displays extremely uniform grain size and composition throughout the whole cross-section. Investigation also shows that both TRC and MC-TRC processes with reduced deformation are effective to reduce the formation of defects, particularly the formation of the central line segregations
Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation
In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex
continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother
wavelets family. In this work we present the inversion formula and Parsval
theorem for CCWT by virtue of the entangled state representation, which makes
the CCWT theory complete. A new orthogonal property of mother wavelet in
parameter space is revealed.Comment: 4 pages no figur
Electronic bandstructure and optical gain of lattice matched III-V dilute nitride bismide quantum wells for 1.55 m optical communication systems
Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near-
and mid-infrared applications, particularly in 1.55 m optical
communication systems. Incorporating dilute amounts of Bismuth (Bi) into GaAs
reduces the effective bandgap rapidly, while significantly increasing the
spin-orbit-splitting energy. Additional incorporation of dilute amounts of
Nitrogen (N) helps to attain lattice matching with GaAs, while providing a
route for flexible bandgap tuning. Here we present a study of the electronic
bandstructure and optical gain of the lattice matched
GaNBiAs/GaAs quaternary alloy quantum well (QW) based on the
16-band kp model. We have taken into consideration the interactions
between the N and Bi impurity states with the host material based on the band
anticrossing (BAC) and valence band anticrossing (VBAC) model. The optical gain
calculation is based on the density matrix theory. We have considered different
lattice matched GaNBiAs QW cases and studied their energy dispersion curves,
optical gain spectrum, maximum optical gain and differential gain; and compared
their performances based on these factors. The thickness and composition of
these QWs were varied in order to keep the emission peak fixed at 1.55 m.
The well thickness has an effect on the spectral width of the gain curves. On
the other hand, a variation in the injection carrier density has different
effects on the maximum gain and differential gain of QWs of varying
thicknesses. Among the cases studied, we found that the 6.3 nm thick
GaNBiAs lattice matched QW was most suited for 1.55
m (0.8 eV) GaAs-based photonic applications.Comment: Accepted in AIP Journal of Applied Physic
Effects of lattice mismatch on interfacial structures of liquid and solidified Al in contact with hetero-phase substrates: MD simulations
Published under licence in IOP Conference Series: Material Science and Engineering by IOP Publishing Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.In this study, the effects of the misfit on in-plane structures of liquid Al and interfacial structure of solidified Al in contact with the heterophase substrates have been investigated, using molecular dynamics (MD) simulations. The MD simulations were conducted for Al/fcc (111) substrates with varied misfits. The order parameter and atomic arrangement indicated that the in-plane ordering of the liquid at the interface decreases significantly with an increase of the misfit, i.e., solid-like for small misfit and liquid-like for large misfit. Further, our MD simulation results revealed that a perfect orientation relationship forms at the interface between the substrate and the solidified Al for a misfit of less than -3% and the boundary is coherent. With an increase in the misfit, Shockley partial and extended dislocations form at the interface, and the boundary becomes a semi-coherent or low-angle twist boundary.EPSR
- …