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FOREWORD 

This report is Volume II of a three-volume final report 

which presents results of work performed by the Lockheed­

Huntsville Research & Engineering Center f or the NASA-

Marshall Space Flight Center under Contract NAS8-26642. 

The NASA contract monitor for thi.s study was E. Haschal 

Hyde of the Structures & PopulsionLaboratory. 

The total work performed under Contract NAS8-26642 is 

documented in three separate volumes. Volumes I and mare: 

Volume I - Study of Multilayered Insulation 
Pipe Penetrations, LMSC -HREC 
TR D390690-1 

Volume m - Long Term Cryogen Storage, 
LMSC -HREC TR D390690-m 

The document control numbers of Volumes I and III are identical 

to this volume with the exception that the last digit following the 

basic DCN is either a -I or -III. 
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Section 1 

INTRODUCTION AND SUMMARY 

1.1 THERMAL ACOUSTIC OSCILLATION PHENOMENA 

In 1850, Sondhaus observed that audible sound was produced from the 

tubes used by glass blowers. A gas flame applied to a bulb-end caused the 

air in the tube to oscillate and produce a clear sound which was characteristic 

of the dimensions of the tube. This discovery is known as the Sondhaus thermal 

acoustic oscillations phenomenon. Lord Rayleigh in 1878 provided an explana­

tion for the spontaneous occurrence of these heat driven oscillations. He ex­

plains that the oscillatlc)ns occur if heat is added to the air at the point of 

greatest compression and heat is taken out at the point of greatest-expansion. 

This explanation has become knowI1- as the 11 Rayleigh criterion." 

The occurrence of thermal acoustic os cillations in low temperature 

apparatus was observed by investigations as early as the 1940s. The oscilla­

tions occur because the Rayleigh criterion is fulfilled for these systems. A 

tube which pc:metrates a cryogenic storage vessel can become filled with vapor 

due to normal boUoff of the cryogen. H the tube is closed on one end and ex­

posed to an ambient thermal environment, then heat is added to the vapor at 

the closed end. Oscillations are initiated by expansion of the fluid as it is 

heated. The oscillations, in turn, forc~ vapor from the tube at the open end. 

Cool vapor is then withdrawn into th~ ,tu,\:>e to replace the mas s which was 

ejected. This process is sufficient to· sustain the oscillations for long periods 

of time for certain geometries and boundary values. The large temperature 

gradient imposed on a compressible fluid is the driving mechanism. 

In addition to being annoying, these thermal acoustic oscillations can 

be detrimental to the storage of cryogens. The acoustic pressq.re waves 

transfer heat from the war-m. end of the tube into the cold liquid. Investigations 

have determined that the additional heat leak due to oscillations can be several 
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orders of magnitude larger than the normal (no oscillation) penetration heat 

leak. This large amount of heat pumped into a cryogenic storage vessel can 

cause such large boiloff to render long-term storage on space missions im­

possible . 

The thermal acoustic oscillations phenomena has been the subject of 

many investigations, both analytically and experimentally. Most of the experi­

mental work has been concerned with characterizing the oscillations rather 

than measuring the boiloff rate (i.e., heat leak) for different tubes and para­

metric values. The analytical efforts have been confined to studies of linear­

ized hydrodynamic equations. These attempts have failed to predict sustained 

oscillations due to the neglect of the nonlinear driving mechanisms. No attempt 

has been. made, until the present work, to analytically predict the heat transfer 

du~ to thermal acoustic oscillations. 

1.2 STUDY OBJECTIVES AND APPROACH 

The objectives of this study are to determine: 

• The conditions which cause or suppress ,?scillations 

• The frequency, amplitude and intensity of oscillations 
when they exist 

• The additional heat leak induced by the oscillations, and 

• Parametric system parameters which can be adjusted to 
suppress oscillations and thus heat transfer. 

A general analytical tool WaS developed for satisfying these objectives. 

In addition to developing the analytical model, a major objective of the study 

is to obtain parametric curves which can be used by a designer in analyzing 

a particular system. This requires a parametric study to be done using the 

analytical tool. The final goal is to verify the analytical model by comparison 

with experimental data. 

The approach used in the model development was to obtain a system of differen:' 

tial equations and boundary conditions which represent the physical problem. 
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The most general equations describing the thermal acoustic oscillations phe­

nomena are the Navier-Stokes equations. These are very complex in their 

general form, and no solution for general cases have been reported. The 

approach taken here applies certain assumptions, which are justified, to ob­

tain equations which can be solved. Even in their simplest form for thermal 

acoustic oscillations, these cannot be solved in "closed form." However, num­

erical methods using a digital corrLputer have been very successful in solving 

problems in many aSI:J8cts of fluid mechanics. The thermal acoustic oscilla­

tions (TAO) computer program is based on a numerical solution of the Navier­

Stokes equations. 

In addition to a model for obtaining the solution profiles, a method for 

determining the dominant frequency content, amplitude and intensity of the 

oscillations is needed. A General Statistical Analysis (GSA) computer pro­

gram was utilized for this purpose. The TAO solutions are processed by a Fast 

Fourier Transform algorithm and the power spectral density function is com­

puted. The TAO program and the GSA program together constitute the analytical 

tools used in this study. 

An experimental verification program was conducted in conjunction with 

the analytical model development. A liquid helium research dewar was used for 

the experimentation. Stainless steel and aluminum tubes having length to 

diameter ratios from 100 to 1000 were used as the test penetrations. A Kistler 

Piezotron pressure transducer was used in conjunction with a dual trace oscillo­

scope, a McIntosh audio amplifier, and a true rms meter to record the oscilla­

tion wave characteristics. The boiloff measurements were taken from a 

commercial LHe dewar using a system containiJlg vent valves, flow Yalves, a 

surge tank, flow rate measurement valve, a Hastings ·,Raydist flowmeter and a 

differential voltmeter. Measurements were made for oscillation frequency and 

amplitude and boiloH rate for a matrix of tubes sizes, materials, and distances 

of the tube in the dewar. The data were reduced and compared with results of 

the analytical predictions. 
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1.3 SUMMARY OF CONCLUSIONS AND RESULTS 

The study has resulted in a number of conclusions regarding thermal 

acoustic oscillations in cryogenic storage systems. These conclusions are 

summarized below. 

• A literature review has revealed that thermal acoustic 
oscillations are a common occurrence in liquid heliurrl 
storage systems. Most investigators have discovered 
very large additional heat leaks due to the oscillations. 

• The present study has shown by analysis and experiment 
that the oscillations do occur and can be sustained' for long 
periods of ti.me. 

• Thermal acoustic oscillations cart potentially occur in any 
cryogenic system which contains a tube penetration. 

• The oscillations can be initiated purely by thermal means, 
i.e., expansion of gas in a tube heated on one end and having 
an open end exposed to a very cold environment. 

• The stability of oscillations has been shown to be a function 
of the length-to-diameter ratio of the tube, the temperature 
ratio of warm end to cold end, the length of tube expos ed to 
the cold environment, the proximity of the tube to the liquid. 
surface and perhaps external disturbances. 

• A stability diagram was devised for use in estimating the 
existence of os cillations. 

• Thermal acoustic oscillations produce large heat leaks to 
stored cryogens. Analysis and experiment have shown 
that as much as two orders of magnitude increase in heat 
transfer can occur if oscillations are present. 

• The frequencY' of the os cillations studied range froIn ...... 2Hz 
to as large as lOO Hz. 

• A warm-end to cold-end temperature ratio of at least 6 is 
required to sustain oscillations. 

• Pressure amplitudes (peak-to-peak) as large as -- 0.4 
atm were obtained for large length-to-diarneter ratio 
tubes. 

• The ratio of total heat transfer to pnl'e conduction heat 
transfer correlates with oscillation intensity. 

• Thermal acoustic oscillations can disturb the liquid cryogen 
itself by injecting mass causing stirring and apparent "turbu-
lent-like" flow at the vapor/liquid interface. . 
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• The large heat leak produced by the oscillations can have 
significa~t effects on storage of cryogens for space missions 
such as the Space Tug. The boiloff rates could be large enough 
to cut mission times short or prohibit them altogether. 

• The study has identifi6d system parameters which are at the 
designers disposal for possibly preventing oscillations from 
occurring. 

• Th/T c ratio below about 6 should prevent sustained oscillations. 
This is accomplished most readily by cooling the closed end of 
the tube. 

• The LcL ratio should be kept small, i.e., minimize the length of 
tube exposed to the cold environment. 

• Tubes with small LID ratios (e.g., 25) are less likely to induce 
oscillations. 

• The open end of the tube should not be placed close to the liquid 
surface. This will minimize stirring if oscillations do occur. 

• The oscillations can be damped by occasional venting through a 
valve, etc., at the "closed" end of the tube. 

1.4 REPORT CONTENTS 
to 

The organ.ization of this re]?ort is summarized below to aid the reader 

in quickly locating desired information. 

Section Page 

2.1 7· 

2.2 28 

2.3 49 

2.4 78 

Description 

A historical survey of the literature is 
given, including discussions on the explanation 
of thermal acoustic oscillations and their 
potential effects. 

This section presents a discussion of 
the analytical model of thermal acou stic 
oscillations including assumptions made, 
model parameters and com.puter prcgrams. 
Section 2.2.5 presents analytical results 
from the computer program study. 

The experimental verifications program 
is discussed. The apparatus used in 
conducting the tests, sample test data, and 
experimental anomalies are described. 

The Lockheed anaiytical predictions are 
compared and contrasted with previously 
reported theory and experimental data. 
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Description 

This section gives comparisions of 
Lockheed's analytical model predictions 
(2..2.) with the experimental data (2..3~ 
Comparisons include existence of 
oscillations, wave characteristics, and net 
heat leak. 

The conclusions reached as a result of 
this study are summarized in terms of 
thermal acoustic oscillations phenomena, 
experimental anomalies, and analytical 
methods. 

A summary list of recommended items for 
further study is given. Both analytical and 
experimental tasks are suggested. 

Thermal acoustic oscillation references 
are listed. 

The Appendix contains details d the mathe­
matical formula.tion of the thermal acoustic 
oscillation problem including equations, 
numerical methods and computer progran"l 
descriptions. 
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Section 2 

TECHNICAL DISCUSSION 

LITERATURE REVIEW, PHENOMENA DESCRIPTION AND 
IMPLICATIONS 

This section prer;ents a review of the literature on therrnal acoustic 

oscillations and a description of the phenomenon itself. The papers which are 

CCll>ce.:!'nl~d 'l.'it.h applications to low temperature apparatus and those dealing 

with conlputati.)n of thermal acoustic waves are of particular interest in this 

study. These publications, given in Refs. I through 35, are reviewed in sum­

mary form. Those which present results directly applicCl.ble to the goals of 

the present study are reviewed in some detail. 

2.1.1 Phenomenon Discovery (Sondhauss) 

The discovery of the thermal acoustic oscillation phenomenon is gen­

erally credited to Sondhauss in 1850 (Ref. I). He observed the heat-generated 

sound produced by glass blowers when blowing a bulb on the end of a narrow 

tube. This "Soztdhauss tube" was open on one end and terminated in a bulb 

on the other. A steady gas flame applied to the bulb-end caused the air in the 

tube to oscillate and produce a clear sound which was characteristic of the 

dimensions of the tube. Larger bulbs and longer tubes produced lower fre­

quency sounds and hotter flames produced more intense sounds. The apparatus 

used by Sondhauss in his early studies is shown schematically in Fig. 1. Heat 

was added at the bulb end and removed from the open end which was exposed 

to ambient air. Although Sondhauss apparently discovered the phenomenon he 

gave no explanations for the production of the sound. 

2.1.2 First Explanation of Phenomenon (Rayleigh Criterion) 

Lord Rayleigh, 1878 (Ref. 2), was the first to explain the physical me­

chanism for the spontaneous occurrence of thermal acoustic oscillations. 
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His explanation of the mechanism is that oscillations are encouraged if 

heat is added to the air at the point of greatest compression and heat is 

taken out at the point of greatest expansion. Rayleigh explained that this 

criterion is fulfilled in the Sondha~ss tube because the moment of greatest 

compression occurs when the gas is compressed into the hot end where it 

becomes heated and expands, thus encouraging the oscillation; in addition, 

thu moment of greatest rarefaction occurs when the gas expands into the 

cool end of the tube where heat is removed which also encourages oscilla­

tion. Under the conditions described by Rayleigh, small wave-type distur­

bances grow and become self-sustained oscillations due to heating and 

cooling effects. It is the relative temperature difference between the ends 

of the tube which causes this effect. Thus the oscillations can be started by 

either heating one end. cooling one end. or both. 

2.1.3 Observation of Oscillations in Cryogenic Apparatus (Taconis) 

Apparently the first observation of thermal acoustic oscillations in 

low temperature apparatus was made by Taconis. 1949 (Ref. 3). He observed 

spontaneous acoustic oscillations in a hollow tube which was used for stirring 

liquid helium. The upper end of the tube was closed (at room temperature) 

while the lower end was immersed in the liquid helium. Taconis' explan­

ation 01 how the large thermal gradient along the tube caused the 0 scillations 

was essentially a restatement of the Rayleigh criterion. He noted, however, 

that the oscillations caused an effective "stirring" such that heat transferred 

to the fluid was so gl.·eat that large boiling occurred. The net effect of the 

"stirring" was to significantly increase the heat transfer and result in the 

boiling . 

A schematic of th~ apparatus in which acoustic oscillations occur in 

cryogenic systems is given in Fig. 2, A storage device containing the 

liquid is penetrated by a tube. The purpose of the tube is for filling the 

tank,. for venting the device, for stirring the liquid, etc. The upper closed 

end of the tube is exposed to ambient temperature and the open end is ex­

posed to the cold environment. As heat leaks into the storage vessel, the 

liquid starts to boil off, filling the tube with vapor. The gas-filled tube 

thus has one end at near-ambient temperature and the other end at 
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Heat Addition 

D ......-----Closed End 
erature) (Ambient Temp 
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Cold 
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Heat 0 Removal -iI"""" - -
Liquid Helium 

Fig.2 - Schematic of Basic Apparatus for Observing Thermal Acoustic Oscillation in Liquid Helium Storage Systems 
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near -cryogenic temperature. The acoustic oscillations begin as a result of 

the expansion of the gas from the closed end as heat is transferred by con­

duction. The oscillations then are encouraged as heat is taken from the gas 

near the cold end. The Rayleigh criterion is thus fulfilled for the cryogenic 

apparatus and provides and explanation for the spontaneous occurrence of 

acoustic oscillations observed by Taconis. 

2.1.4 Phenomena illustration 

Figure 3 is a schematic which illustrates the sequence of events for 

thermal acoustic oscillations in a liquid helium storage vessel. At the 

initial "time" t = 0, the tube is filled with helium gas at some initial 

uniform temperature. ThE: upper closed end of the tube is always exposed 

to the hot (ambient) temperature. An instant of time later (t l ), the gas in 

the pipe heats up at the top a'nd cools down at the bottom due to conduction 

heat transfer. The gas column has some temperature distribution at t = 2 

as shown. As heat is continually added from the top, the cold gas is moved 

down the tube at t = 3 since the hot gas expands from the closed end. The 

expansion continues at t = 4 forcing the warm gas out the end of the tube. 

This convective heat transfer then increases to the boil-off of the liquid. 

At time t = 5, cold gas is drawn back into the tube since the pressure at 

open end is now lower than the internal gas pressure in the dewar. This 

"suction" con.tinues at t = 6, but the gas which was drawn in now warms up 

due to continued heat addition at the top. The time t = 7 shows the process 

being repeated as the oscillations sustain themselves purely by thermal 

means. 

This simple illustration was presented to clarify the mechanism by 

which the oscillations are started (thermal expansion), the mechanism by 

which heat is transferred {mass transfer}, and the mechanism by which the 

oscillations are sustained (heat addition and removal). The illustration in 

Figure 3 is a simplified display of the mechanisms explained by Rayleigh 

in 1878. 
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The discussion which follows presents the historical development of 

the technology and understanding of this phenomenon. Analytical and exper­

imental studies have been done on: (l) characterizing the conditions wh;.ch 

cause oscillations; (2) determining the additional heat leaks produced by the 

oscillations; and (3) explaining the mechanisms whereby oscillations are 

sustained or damped out. The emphasis on understanding the phenomenon 

is coupled to the major problem of cryogen boil-off and the reduced ability 

for long-term storage. The significance of the large additional heat leak 

in cr.yogenic storage vessels is repeatedly shown in the numerous observ­

ations which are reviewed in the follow subsections. 

2.1.5 Theoretical Analysis (Kramers) 

Kramers, 1949 (Ref. 4), was the first to attempt a theoretical analysis 

of the Sondhauss oscillation problem, but had limited success, He attacked 

the problem by considering small amplitude waves which could be described 

by the linearized hydrodynamic equation~ of m.ass, momentum and energy. 

The waves were considered to have three components: a main wave, a 

friction wave, and a heat conduction wave. He successfully separated the 

wave components and solved the resulting linearized equations, but he was 

unable to account for the sustained oscillations which were observed in 

many of his experiments. Kramers attributed the failure of his theory to 

the fact that the terms he neglected in linearizing were probably not negli­

gible. A nonlinear approach was thus indicated in 1949, but apparently not 

attempted until the present work. 

2.1.6 Experiments of Wexleri Clement and Gaffney 

Wexler, 1959 (Ref. 5), observed oscillations during a study to design 

storage containers for liquid helium. When the end of a vent tube was re­

stricted by a rubber tube the oscillations could be felt by holding the rubber 

tube. He makes the statement, without supporting data, that the influx of 

heat due to the oscillations may be 1000 times the normal heat leak. 
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Clement and Gaffney, 1954 (Ref. 6), experimentally studied sponta­

neous thermal oscillations, which occurred in small diameter tubes having 

one end at room temperature and the other end at liquid helium temperature. 

They observed that the optimum conditions for oscillations occurred when 

the end at room temperature was completely closed and the end immersed 

in the liquid helium was open. Their experiment indicated that a tube 

completely dpen at the hot end could not be made to oscillate unless its in­

side diameter was less than approximately I mm. Tubes having the cold 

end completely closed could not be made to oscillate at all. They also ob­

served oscillations in the annular space between the double wall of a liquid 

helium transfer- siphon tube. Oscillations in the annular space could be 

damped simply by placing a snug fitting brass ring in the annulus near the 

cold end to block the gas motion. Another important fact discovered by 

Clement and Gaffney was that oscillations occurred in a tube when the cold 

end was withdrawn above the liquid surface. In addition, they observed step­

like changes in the oscillation frequency as the tube was withdrawn from the 

liquid. The frequency increased suddenly as the tube moved out of the 

liquid and continued to increase as the tube was further withdrawn. This 

allowed the use of a tube as an indicator to designate the location of the 

liquid helium surface. 

2.1. 7 Work of Trilling; Chu; Ditmars and Furukawa 

Trilling, 1955 (Ref. 7), conducted an analytical study of heat generated 

pressure waves. He linearized the hydrodynamic equations and separated 

them into three components representing the three modes of motion. He 

showed that sharp increases in boundary temperature can cause pressure 

waves to propagate in much the same manner as pushing a piston through a 

gas-filled pipe. The magnitude of the pressure pulse was found to be 

directly proportional to the 1/4th root of the acoustic Reynolds number. 

This work, unlike Kramers, was not applied directly to the problem of 

oscillations in cryogenic apparatus. 
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Chu, 1963 (Ref. 8), presents a complex theoretical treatment of heat 

generated pressure waves. He studied self-sustained, thermally driven 

oscillations in a closed pipe. The pressure-time curve is given as a saw­

tooth function and the velocity-time curve as a, square-wave function. The 

frequency was found to be approximately equal to the resonance frequency 

of the system. Ditmars and Furukawa, 1964 (Ref. 9), have noted that in 

ce rtain low temperature experiments, the presence of thermal acoustic 

oscillations often causes the calorimetric measurements to be difficult or 

even impossible due to the large additional heat leaks. 

2.1.8 Analysis of Feldman 

Feldman, 1966 (Ref. 10), conducted an extensive experimental and 

theoretical study of the Sondhauss oscillation. A physical analysis of the 

heat exchange mechanism driving the Sondhauss oscillation was presented. 

The Sondhauss oscillator was treated as a heat engine operating on a 

specified thermodynamic engine cycle. In order for the amplitude of the 

oscillation to grow to a steady state condition, energy additions had to be 

properly phased so that a net increase occurred, in the total energy of the 

gas system after each cycle of oscillation. Thus, for a sustained reasonant 

thermoacoustic oscillation to occur, the following conditions must be met: 

(1) the steady heat source had to interact with the pressure fluctuations in 

the system so that the energy additions to the gas are phased to caUSe the 

oscillations to increase in amplitude (Rayleigh criterion); (2) the heat 

addition rate had to be greater than some minimum value (heat-in greater 

than heat-out); (3) the heated cavity had to be shaped so that a resonant gas 

oscillation can occur, (Feldman observed that a tube length to diameter 

ratio of approximately 15 was required); and (4) the heat source had to be 

located at a point in the pipe where both the gas velocity and pressure are 

sensitive to heat additions such as in the closed end of the Sondhauss pipe. 

He found that the gas 0 scillation could be initiated by some random exter­

nal disturbance, or if the rate of heating is large enough a thermal expan­

sion pressure wave could start the oscillation. Additional papers by 

Feldman, including a literature survey, are given in Refs. 11 through 13. 
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2.1.9 Experimental Program of J. D. Bannister 

J. D. Bannister, 1966 (Ref. 14), conducted experiments for measuring 

spontaneous pressure oscillations in tubes connecting liquid helium reser­

voirs to room temperature environments. He measured osc illation pressure 

amplitudes and frequencies together with longitudinal temperature profiles 

and heat pumping rates for tubes ranging in length from 122 to 214 centi­

meters and diameters from 0.318 to 1.27 centimeters. Bannister's experi­

mental results indicate that: (l) spontaneous pr essure oscillations occurring 

in tubes, which connect liquid helium reservoirs to their 3000 K environments, 

have an amplitude directly proportional to the slenderness ratio of the gas 

column, and (2) the heat pumped by spontaneous oscillations is proportional. 

to the product of pressure amplitude times frequency. 

Figure 4 is a plot of the heat transfer ratio versus intensity as 

presented by Bannister in Ref. 14. The heat transfer rate shown is that 

component derived only from the oscillations; it does not include any 

conduction heat transfer down the tubes. The significant finding repre­

sented by this curve is that the heat leak is linearly proportional to the 

oscillation intensity. A curve shown subsequently in subsection 2.1.16 in­

dicates that the additional heat leak due to oscillations can be two orders 

of magnitude larger than the normal conduction heat leak. 

In addition to the data presented in the paper, a 16 mm movie was 
made in connection with his work. A glass dewar was used such that the 

oscillations could be observed. This film was obtained from Mr. Bannister 

for use in the present study and has proved to be very valuable. Some ex­

cerpts from this film are given for illustrative purposes in Figures 5 and 6. 

Figure 5 gives the configuration used for the vi&llal observation tests. 

Figures 6a, 6b, and 6c show results of the tests for a tube below, at, and 

above the surface. These figures show the gas (dark areas) being pumped 

out of the tube and also the large degree of stirring they cause. This film 

should dispel all doubts about the existence and magnitude of thermal 

acoustic oscillations in liquid helium storage devices. 
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Fig. 4 - Heat Pumping Rate vs Intensity (from Bannister, Ref. 14) 
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Pressure Transducer 

Stainless Steel Tube 
122 cm long 
0.476 cm o.d. 
0.015 cm wall 
Open end expos ed 
to liquid helium; 
closed end exposed 
to ambient tempera­
ture 

Fig. 5 - Configuration Used by Bannister for Visual Observation 
of Thermal Acoustic Oscillations (Region in dotted lines 
is shown in movie excerpts.) 
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Fig. a - Resul s of Bannis er (Ref. 14): Open End of Tube 2.5-1: cm Below Liquid Heli 
Surface (f = 20.5 Hz, A = 2.82 x 104 1m2 ) 
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Fig. b - Results of Bannister (Ref. 14): Open End of Tube at Liquid 
Helium Surface (f = 21.2 Hz, A = 4.07 x lO4 N/m 2) 
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Fig . 6e - Results of Bannister (Ref. 14): Open End of Tube 5.1 em Above 
Liquid Helium Surface (£ = 34.1 Hz, A = 8.0 x 10

4 
N/m 2 ) 
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2.1.10 Observations of Larkin; Thurston and Rogers 

Larkin, 1967 (Ref. IS), was apparently the first to solve the nonlinear 

conservation equations for simulating thermally induced wave motion. He 

used a finite-difference method and a digital computer to generate the 

l,"esults. The model consists of two infinite plates with helium gas as the 

fluid. His analysis was concerned with the initiation of transient waves and 

not with sustained motion. Results of this analysis indicate that: (I) the heat 

transfer can be greatly increased over pure conduction due to acoustic 

pressure waves and (2) numerical methods can be used successfully to 

calculate thermal acoustic oscillations. 

Thurston and Rogers, 1967 (Ref. l6), report that thermal acoustic 

oscillations occurred as a result of forced convection heating of dense 

hydrogen with film boiling. The experimental measurements of frequency 

and amplitude were correlated in terms of a "boiling" number and a 

Strouhal number. The inception of oscillations is correlated. in terms of a 

specific volume number. The authors inferred that a dense-core super­

heated film mechanism was used to explain the role of heat transfer in 

producing the 0 s cillations. 

2.1.11 Theoretical Analysis of Stability (Thullen and Smith; Rott) 

Thullen and Smith, 1968 (Ref. l7), present an analysis for determining 

the parameterf': and operating region for oscillations associated with liquid 

helium. They used a "lumped parameter" theoretical model and correlated 

the zones of growing and decaying oscillations in terms of dimensionless 

groups. Comparison of the results with some experimental measurements 

taken from a complex configuration show that the general behavior trend is 

corre ct. Accuracy of 6% is claimed by the authors when comparing their 

frequencies with Bannister's results. 

Rott, 1969 (Ref. 18), presents a complex mathematical formulation of 

the linearized equations for small amplitude motion. His purpose was to 
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determine the stability limit for thermal acoustic oscillations. This paper 

presents no results, only the formulation of the problenl. However, he pre­

sents some very useful results in a later paper subsequently discussed. 

Mortell, 1971 (Ref. 19), also gives the detailed mathematics for description 

of small amplitude resonant motions of a gas in a tube. 

2.1.12 Experimental and Theoretical Study of Collier 

Collier, 1972 (Ref. 20), investigated thermally induced oscillations in 

cryogenic systelT'.o. In. an experimental study, he found that the surface 

temperature of a steadily heated cylinder oscillates with an amplitude of 

about O. 250 K and a frequency of about 8 Hz when immersed in slush hydro­

gen. The amplitude and period of oscillation were found to be relatively 

independent of the heat flux at the surface in the range from 0.25 to 1. 5 

watts/ cm2 . The author claims that the experimental results were consistent 

with a theoretical model which was developed and which predicted oscillations 

in the thermal expansion of a liquid film located between the heated surface 

and the slush. The model was based on the assumptions of "relatively 

incompressible" and "slowly accelerating" fluid flow. Since the important 

effects of viscosity were neglected in Collier's model, his results can be 

considered as approximate qualitative solutions. 

2.1.13 Stability Theory of Rott 

Rott, 1973 (Ref. 21), presents an extension of his previous work 

(Ref. 18) aimed at determining the oscillation stability limit for helium. 

He used a "second-order" linear theory to produce, for a range of 

dimensionless parameters, a curve indicating the range where oscillations 

can be expected to occur. One of Rottls curves is reproduced in Fig. 7. 

The governing parameters were determined to be the ratio of the hot end 

temperature to cold end temperature" the aspect ratio of the tube, the 

length of the "cold" part of the tube and the acoustic Reynoldls number. 

The dimensionless parameters determined by Rott are used in the present 

study to display a similar plot for stability analysis. This is discussed in 

more detail in Section 3.4. 

23 

: I 

, 

1 
1 
1 

1 
I 
,I 

1 



N 
~ 

100 

50 

T 
h20-

Te 

10 

5 

2 L' _-l... _____ -.L. _____ __ 

1000 10 100 

d / 2 (Laell ) 1/ 2 
e e 

~ = L-l 
1 

Th 

1 __ 
1 

~d 

-- IL 1 : 
I e I 
I --r - I 
I T e I 
I I 
I ...J 
I _ 'I 
t- I 
!----

Configuration o f Rott 

Fig. 7 - Work of Rott (Ref. 21) 

1 
L 

t"' 
E:: 
?q 
I ::c 

!:I:J 
Pl 
() 

I-i 
!:I:J 

o 
UJ 
-.CJ 
o 
0' 
-.CJ 
o 
I ..... ..... 



r 
,; 
II 

IT, " II 

[ 
~' : 
[,
" , -, 

if 
~ 

[ 

T,' 
~ 

I,i 1. 1 

I 
I;, j - -

I-; ! ; 

I 

---[~-, 

.. . . I 

LMSC-HREC TR D390690-II 

2.1.14 Experiments of Von Hoffmann et al 

Von Hoffmann, Lienert and Quack, 1973 (Ref. 22), pres~nt results of 

an experimental study to verify the stability limit of Rott. Tubes of various 

sizes were inserted into a double glass dewar. A brass vessel filled with 

liquid nitrogen was used to control the temperature of the "warm" end of 

the tube in order to vary the Th/T c ratio. A piezoelectric pressure sensor 

at the closed upper end of the tube was connected to an oscilloscope so 

that the oscillations could be observed. A plot of the results, compared to 

the theory of Rott, is given in Fig. 8 as repro~uced from Ref. 22. 

500r-------~------------------~ 11 Theory 
295 -

/ ,V Experimen:",,~ 
I I """/' , ".-:/ 
\. '--;:,.-----

20~ __ ~1 __ 1~ __ ~1~ ________ .1 __ ~ 

0.5 0.8 1.8 12 
d ,mm 

o 

Fig. 8 - Data of Von Hoffmann Compared with Theory of 
Rott (from Ref. 22) 

Von.Hoffman clairns qualitative agreement as shown by Fig. 8 and explains 

the lack of quantitative agreement on his experimental inaccuracies. He 

also notes that it was very difficult to get reproducible results for the 

pressure amplitude. This work appears to be the most recent effort 

(to 1974) on experimental studies of thermal acoustic oscillations. 
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2.1.15 Numerical Solution of Spradley 

Spradley, 1974 (Ref. 23), at Lockheed-Huntsville developed a numerical 

method for the solution of a nonsteady, viscous, heat conducting, compressi­

ble flow problem by a vigorous nonlinear formulation. In this model, helium 

gas, initially at a uniform temperature, To' was confined between two 

parallel boundaries. At time t = 0, the temperature of the lower plate is 

suddenly raised to Tw = 2 To' while the upper plate is kept at the constant 

value To. Because of heat transfer and compressibility effects, thermal 

acoustic waves are set up in the system. These wave phenomena greatly 

increase the heat transfer rate into the system. Typical results of this 

solution, as obtained from the computer program, are shown in Fig. 9. This 

figure shows the calculated dimensionless velocity and pressure profiles as 

a function of time at the center between the two plates. This figure also 

shows the oscillatory nature of the wave motion. The period of the 

calculated wave is 1. 55 units of dimensionless time which corresponds to 

the acoustic wave period in this system which is 2/~ or 1.55. Thus the 

calculated waves are acoustical. This analysis also shows that thermally 

induced wave motion can greatly increase the heat transfer over the pure 

conduction mode. A general numerical technique and computer program 

was developed for solving the nonlinear conservation equations governing 

the thermally induced waveS. Complete profiles of temperature, pressure, 

gas velocity and heating rate can be obtained. This work forms the basis 

for the present study of thermal acoustic oscillation in tubes connected to 

low temperature apparatus. 

Other work concerned with this general area of thermal acoustic 

oscillations is given in Refs. 24 through 35. Considerable effort was 

expended on this literature survey, but there always is the possibility of an 

important omission. The authors would appreciate learning of any such 

work or any other unpublished efforts in this field. 
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2.1.16 Summary and Perspective 

The preceeding review of the literature has presented a historical 

overview of thermal acoustic oscillations complemented by a discussion of 

the physical mechanisms that cause them. Discovery of the phenomenon 

was by Sondhauss in 1850, the first explanation of the cause was by 

Rayleigh in 1878, and the first observation of the spontaneous occurence of 

oscillation in cryogenic apparatus was made by Taconis in 1949. Since 

Taconis ' work, numerous observations of thermal acoustic oscillations 

have been made together with the accompaning large heat leaks they can 

cause. The heat addition at the closed end of a tube and the heat removal 

at the open end causes sustained oscillations for a long period of time. 

Figure 10 is a re-plot of the data of J. D. Bannister showing that the heat 

addition due to oscillations can be two orders of magnitude larger than the 

pure conduction heat leak (data spread is different experiment conditions). 

The large amount of heat pumped into a cryogenic storage vessel can cause 

such large boil-off that long term storage on space missions can be im­

possible unless the systems are designed to suppress oscillations. There is 

a possibility of these oscillations occurring in any cryogenic storage system 

with fill lines, vent lines or other tube penetration connected to an ambient 

environment. 

The discussion in succeeding sections describes the analysis and 

experiments performed by Lockheed and presents curves showing effects of 

system parameters on oscillation characteristics. Analytical predictions 

and experimental measurements of heat transfer are shown and implications 

for long term storage are given in Sections 2.4 and 2.5. Conclusions 

resulting from this study are summarized in Section 3 and recommendations 

fo r further study are given in Section 4. 

2.2 ANAL YTICAL MODEL 

A brief, general description of the analytical model of thermal acoustic 

oscillations is presented in this section. Details of the mathematics, fluid 

mechanics and numerical method are given in Appendix A. 
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2..2..1 Model Description 

Kramers, 1949 (Ref. 4), attempted to theoretically model thermal 

acoustic oscillations using a linearized system of equations. He could 

not predict the sustained oscillations and attributed his failure to the 

neglect of nonlinear effects. Rott (Ref. 2.1), in 1973 was somewhat suc­

cessful in an analytical approach using a second-order linear theory. 

The approach taken for the present work is to use a full nonlinear model 

to study the various problems associated with thermal acoustic oscillations. 

To the authors' knowledge, this is the first work to attempt such an analysis. 

The objective of this study dictated the nonlinear approach. A 

general analytical tool was sought for use in predicting: 

• The conditions which cause or suppress oscillations 

• The frequency, amplitude and intensity of oscillations 
when they exist 

• The additional heat leak induced by the oscillations, and 

• Parametric system parameters which can be adjusted to 
suppress oscillations and thus heat transfer. 

In addition to developing the analytical model, a major objective of 

the study was to obtain parametric curves which can be used by a designer 

in analyzing a particular system. This requires a parametric study to be 

done using the analytical tool. The final goal was to verify the analytical 

model by comparison with experimental data. A summary of the approach 

taken is given in Fig. 11. 

The first step in the model development is to obtain a system of differen­

tial equations and boundary conditions which represent the physical problem. 

The most general equations describing thermal acoustic oscillations pheno­

mena are the Navier-Stokes equations. These are very complex in their 

general form, and no solution for general cases have been reported as of 

1975. The approach taken here is to apply certain assumptions, which must 

be justified, in order to obtain equations which can be solved. Even in their 
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simplest form for thermal acoustic oscillations, these cannot be solved in 

"closed form." However, numerical methods, using a digital computer, 

have been very successful in solving problems in many aspects of fluid 

mechanics. The thermal acoustic oscillations (TAO) computer program is 

based on a numerical solution of the Navier-Stokes equations. These 

equations and the solution technique are given in Appendix A. 

In addition to a model for obtaining the solution profiles, a method for 

determining the dominant frequency content, amplitude and intensity of the 

oscillations is needed. A General Statistical Analysis (GSA) computer pro­

gram (Ref. 37) was utilized for this purpose. The TAO solutions are pro­

cessed by a Fast Fourier Transform algorithm and the power spectral 

density function is computed. The TAO program and the GSA program 

together constitute the analytical tools for use in this study. 

The assumptions used in developing the model are of interest to the 

designer in determining the applicability of the model to a particular 

configuration. The geometric configuration used for the model is shown in 

Figure 12. A cylindrical tube closed on one end and open on the other is 

shown. A subset of the model allows the tube to be closed on both ends. 

The basic form of the model is developed by applying the following assumptions: 

• The tube is filled with gas; no liquid region is modeled. 

• Flow in the tube is laminar and axisymmetric. 

• Thermal conductivitYIl viscosity and heat capacity are 
functions of temperature only. 

• Radiation, internal heat sources and viscous dissipation 
of energy are negligible. 

• The closed end of the tube is assumed to be connected 
to a large volume of cold gas. 

• The closed end of the tube is held at a constant (room) 
temperature. 

• The fluid is not restricted to helium, but helium was used 
in all calculations for this study. 

• The flow is driven entirely by thermal expansion due to 
a large temperature gradient imposed on a compressible 
fluid. 
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Fig. 12 - Geometric Configuration and Coordinate System 
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• The stability of the system to small perturbations is 
governed by the pressure oscillations at the open end 
of the tube. 

In addition to these major model assumptions, there are others used in 

writing the differential equations: (1) a Newtonian relation with Stokes 

hypothesis (see Appendix A) is assumed for the viscosity; (2) an ideal gas 

law with variable compressibility coefficient relates the pressure to 

temperature and density; (3) gravitational body forces are neglected; (4) 

conduction heat losses from the tube walls are supplied as boundary 

values; and (5) the pressure perturbations are assumed to be sine waves. 

Justification for these assumptions is also given in Appendix A. 

2.2.2. Model Parameters 

Parameters used for the analytical TAO model are based on the 

s1:ated objectives of this study and on those pertinent papers which have 

appeared in the literature. Each of these that appear in the model is 

briefly discussed as to how they influence the oscillations. 

• L/n - The 1ength-to-diameter ratio of the tube deter­
mines to great e~tent whether or not oscillations will 
occur. If they do occur, the length of the tube influences 
the frequency and hence intensity. 

• Th/T c - The ratio of the "hot" temperature at the cIo sed 
end to the "cold" temperature at the open end is the driv­
ing mechanism for initiating and sustaining oscillations. 

• Lc/L - The ratio of the length of tube exposed to 
the cold environment, Lc to the tota11ength L. This 
parameter also strongly influences the intensity of the 
0scillations and, in the physical situation, the disturb­
ance of the liquid surface. 

• Re - The acoustic Reynolds number, 

Re = P La 
It 

where a, the local acoustic velocity (speed of sound). 
strongly governs the stability of the system to pertur­
bations, i.e., whether or not the oscillations are sustained. 
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• k, p., Cp ' Z versus T - T·he temperature variation of the 
conductlvity, k, the viscosity p., the specific heat C p and 
compressibility Z are vttal to proper modeling because of 
the large temperature range considered. 

• f, A, I - The frequency, f, amplitude, A, and intensity, 
I = fA, are important factors which influence the heat 
leak due to oscillations. In addition, these may also 
.influence structural design since large intensity pressure 
oscillations can cause structural damage. 

• % t = The ratio of the total heat leak (oscillations plus 
conduction) to the normal heat leak in the tube walls is 
a measure of the effect of oscillations on boiloff rates 
and hence efficiency of stora.ge of the cryogen. 

The above sets of parameters were used in constructing the TAO 

model and in performing the parametric study. Effects which have an 

influence on the oscillations but which could not be included in the present 

scope are summarized as follows: 

• The effect of the internal pressure rise in the storage 
dewar is not considered . 

• The amount of liquid in the dewar and the distance of 
the tube from the liquid surface are not modeled. 

• The effect of liquid being present in the tube is neglected. 

• The turbulence which is apparently induced at the 
liquid surface due to large intensity oscillations can 
not be modeled with current technology. 

The influence of these neglected effects is discussed in conjunction with 

the discussion of results in Section 2.4. 

2.2.3 TAO Computer Program 

The analytical model was programmed for a digital computer using 

FORTRAN V language. The Univac 1108 system at NASA-MSFC was used 

for most of the computer studies. The program consists of a main 

routine which calls subroutines to solve each of the governing equations. 

A block diagram. is given in Appendix A. 
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The required program inputs include 

• Initial conditions To' Po 

• L,D,Lc 
• T h , T c' qloss (boundary values for tube wall) 

• Gas property tables, /J.. k, C p , z 

• Perturbation parameters, fp' A p ' and 

• Program control flags. 

The computation sequence is a series of loops to iterate on the open 

end boundary values, to solve the equations at discrete grid points, and 

to march the solution forward in time. The outputs include: 

• Complete flowfield definition; temperature, pressure, 
velocity, and density in the gas column. 

• Heat transfer, a/Ot 

• A magnetic tape for use in the GSA program in computing 
frequency, f, amplitude, A , and intensity, I. 

The program is operational on a production basis. The proper 

selection of grid size and time step for compatibility with the tube 

length/diameter ratio is essential for stability of the numerical method. 

The program should be used by an experienced analyst due to this stability 

of the numerical scheme, the peculiar nature of specific configurations and 

the general complexity of the TAO program. 

2.2.4 Spectral Analysis 

This portion of the thermal acoustic-oscillations study is directed 

toward determining the wave characteristics of the computed TAO solutions. 

A simple, yet inaccurate. :method would be to plot the pressure waves 

versus time at numerous points and compute the frequency directly. This 

approach was not taken here because of: (1) the inherent inaccuracies; 

(2) the large numbe rs of cases to be processed; and (3) the calculated wave 

forms have multi-frequency content, i. e •• a higher frequency wave super-
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imposed on the main lower frequency wave. The alternate approach of using 

a power spectral density analysis was taken since a general purpose program 

for this task was already available. 

The Lockheed-Huntsville General Statistical AnalysiE' (GSA) program 

(Ref. 37) was utilized for performing the spectral analysis. The inputs can 

be any functions of time such as temperature and pressure. These are 

supplied via magnetic tape from the TAO solutions. The GSA program then 

calculates mean values, mean squared values, standard deviations and 

variances. The data are then detrended and tapered to give zero mean value 

and slope. The Fourier transform of the complex function is then computed 

using a Fast Fourier Transform (FFT) algorithm and the calculations are 

made for a number of statistical functions. 

The power spectral density (PSD) function for a set of random data 

having oscillating properties describes the general frequency composition 

of the data in terms of the spectral density of its mean value. We start with 

a series recorded in a suitable period of time. The series may represent 

the calculated velocity, pressure or temperature solutions of the thermal 

acoustic oscillations computer program. The mean square values of the 

times series in a frequency range between f and f + LH, may be obtained 

by filtering the series with a band-pass filter having sharp cutoff character­

istics, and computing the average of the squared output from the filter. 

This average squared value will approach an exact mean square value as 

the observation time approaches infinity. Hence, the power spectral density 

of the series at the frequency f is the mean square value of the property at 

f per unit frequency. This program was utilized to obtain the dominant 

frequency content of the waves. Details of the mathematics, including the 

equations and a program flow chart are given in Appendix A. 

2.2.5 Analytical Results 

Typical results from the analytical model are presented in this sub­

section. The purpose of presenting the analytical predictions which follow 

is to (next page): 
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• lllustrate typical analytical model solutions 

• Summarize the parametric study 

• Provide a designer with curves to estimate when a configuration 
can thermally oscillate, and 

• Aid in the presentation of the findings of this study 

The Lockheed TAO analytical predictions and experimental data are 

compared in Section 2.4. 

The analytical calculations are summarized in Figs. 13 through 19. 

These results were obtained by processing a matrix of cases using the 

TAO and GSA programs. Helium is the working fluid used in all calculations. 

Both aluminum ( 606l-T6) and stainless steel (304 CRES) tubes with 

length-to-diameter ratios ranging from 25 to 500 were analyzed. 

Independent parameters used in the model were: 

length to diameter ratio of the tube 

ratio of hot end temperature to cold end temperature 

ratio of length of tube exposed to cold temperature 
to the tota11ength of the tube 

Dependent parameters used in the model were: 

frequency (Hz) 

peak-to-peak pressure amplit'tde (atm) 

oscillation intensity (atml sec) 

heat transfer ratio (%) 

The latter parameter, QIQb is the ratio of the total heat leak to the 

normal conduction heat leak, ie (Qo + Qt> IQt. 

Figure 13 is a stability diagram for helium. The diagram was con­

structed by processing many cases with the TAO program varying Th/T c 

and the 6. parameter shown. This 6. parameter is used for the correlation 
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as discussed by Rott (Ref. 21). The Reynolds number, Re, is based on the 

cold end temperature, the tube length and the kinematic viscosity of helium 

at Tc. For parametric values lying "inside" the curve, oscillations can be 

expected to occur. No oscillations should occur for Th/T c versus t::. 

lying "outside" the curve. Comparison with other predictions and to 

experimental data is given in Section 2.4. 

For Th/T c ratios less tJ;lan about 5, no oscillations were predicted 

for any value of t::.. The range of Th/T c which can produce oscillations 

is larger for the larger L/D ratios. As L/D decreases, ,t::. increases 

requiring an increase in the Th/T c ratio necessary to produce sustained 

oscillations. For values of t::. below 10, no oscillations were produced for 

any Th/T c ratios. For t::. greater than approximately 1000 no oscillations 

should exist for practical Th/T c ratios. 

An example t::. calculation is shown below for the following case. 

L 38.85 in. 

D 0.259 in. 

Lc 19.425 in. 

Re 1.1 x 108 

Th/Tc 21.1 

t::. 49.4 

Using these values of ThlT c and t::., Fig. 13 shows that oscillations can 

definitely occur in this system. The Lockheed experimental program verified 

the existence curve for this case, i.e 0, oscillations did indeed occur. 

Figure 14 is a plot of the peak-to-peak pressure amplitude versus LID 

for parametric values of L IL. A Th' IT ratio of 25 was chosen. The pres-
c c 

sure amplitude increases with increasing tube LID for all values of L IL and 
c 

the increase is linear. The increase in P A with L clL is caused by exposing 

more of the tube to the cold temperature which produces a sharper thermal 

gradient in the tube itself which in turn increases the amplitude of the 
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oscillations. The effect of Th/Tc on the pressure amplitude is shown in Fig. 15. 

The amplitude decreases with decreasing Th/T c for all values of LID. The 

amplitude goes to zero at the critical Tl IT which for these cases range from 
1 c 

approximately 11 for Lin = 100 to approximately 7.5 for LID = 500. The 

maximum temperature ratio used in the matrix of cases is 25 which pro­

duces an amplitude of approximately 0.19 atm for LID = 500. A parametric 

L IL = 0.1' shown here is typical of all values in the matrix . 
c 

The oscillation frequency is shown in Fig. 16 for the same parametric 

variations of LID and Lc/L. The tube diameters were held constant and the 

length was varied to produce the LID values shown. The frequency decreases 

with LID as would be exp ected since the longer tubes produce lower frequency 

oscillation than the shorter ones. The frequency was found to vary little with 

practical Th/Tc ratios. The variation of f with Lc/L also behaves as it 

should, i. e. , the frequency decreases with increasing Lc/L for a fixed LID. 

This occurs because larger Lc/L values corresIDnd to exposing more of 

the tube to the cold environment which reduces the average temperature of 

the gas. The average acoustic veiocity in the gas colurnn decreases as the 

average temperature decreases resulting in a lower frequency oscillation. 

The oscillation intensity is defined here as the frequency-amplitude 

product consistent with Bannister (Ref. 14). A plot of the oscillation intensity 

is shown in Figure 17 for the same LID and Lc/L as the previous figures. 

The intensity values for the Lc/L = 0.01 case always increases with Lin 

while the L IL = 0.1 and L IL = 0.2 cases rise initially and then decrease • 
c c 

The L IL = 0.5 case is monotonically decreasing with LID, and is a direct 
c 

result of the definition of intensity used here. The pressure amplitude always ,. 
increases with increasing LID and the frequency decreases with increasing 

LID. The product. will then either increase or decrease depending on the 

slope of the frequency and amplitude variations. If the pressure amplitude 

increases faster than the frequency decreases, the the intensity will increase 

(and vice versa). 

The magnitude of additional heat leak that can be caused by the oscil­

lations is a primary concern to designers of long term storage vessels. 
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The mass transfer at the open end of the tube was found to be the controlling 

mechanism for the increased heat transfer. The TAO program calculates 

the heat leak at the open end of the tube as discussed in Appendix A. 

Figure 18 shows the amount of increased heat transfer versus Lin. 

The quantity Q is the total heat pumped by the oscillations plus the conduction 

in the tube wall. The Qt is simply the conduction heat leak down the tube 

wall. This figure shows that no additional heat leak is present for Lin less 

than about 75. If oscillations exist at an Lin of 75, the amplitude is so 

small that the additional heat transfer is negligible. 

However, the QIQt ratio rises rapidly when tube Lin's exceed 100 with 

as much as an order of magnitude incl'ease for Lin = 200 and over two orders 

of magnitude above Lin = 450. The variation of Q/Qt with L c/L shows a 

reversal trend between Lin = 100 and Lin = 200. For Lin = 100, the Q/Qt 

ratio increases with increasing L /L. However, for L/D = 200 and above 
c 

the variation with Lc/L is not linear. This behavior is a direct result of the 

nonlinear intensity versus LID seen in Figure 17. For small (100) Lin 

ratios, the intensity. hence QIQt, increases with increasing Lc/L. For the 

larger LID's (500) the intensity, hence QIQt' decreases with increasing 

Lc/L. For intermediate L/D values, the Q/Qt ratio follows the intensity­

variation in Fig. 17. These calculations are compared to experimental data 

in Section 2.4. 

Figure 19 is a cross plot of the QIQt ratio versus pressure amplitude 

for Lc/L = 0.1. The curve is typical for all parametric values of Lc/L in 

the matrix. The increase in Q IQt with increasing amplitude is due to the 

larger amount of mass pumped out of the tube by the larger amplitude 

pressure waves. The effect of Th/T c on QIQt can be seen by comparing 

Figures 15 and 19. As the Th/T c ratio is decreased, the amplitude and 

hence a/at , is also decreased. 

In summary, the parametric study has provided insight into complex 

thermal acoustic oscillations phenomena. Briefly stated, four significant 
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factors were found that influence thermal acoustic oscillations. They are: 

• Re 

Length to diameter ratio of tube 

Ratio of hot end temperature to cold end 
temperature 

Length of tube exposed to cold environment 
ratioed to total tube length 

The acoustic Reynolds number of the gas 
at an average temperature., 

In" addition, the curves should be useful in analyzing configurations for 

the possibility of oscillations occurring and of their characteristics. 

2.3 EXPERIMENTAL VERIFICATION PROGRAM 

The experimental verification program objective was to establish the 

validity and accuracy of the theoretical predictions of the oscillation 

frequencies, amplitudes and int~nsities (frequency times amplitude). 

The resultant effects of those parameters on the total hea.t leak to a very 

low temperature environment such as a liquid helium contair;u.<"l' was also 

of importance during this portion of the program. 

Because of the critical nature of the measurement of the frequency 

and amplitude of the occur:dng oscillations, a precision instrument which 

had been calibrated using secondary standards was used. A description 

of the characteristics of this instrument, a Piezotron dynamic pressure 

transducer manufactured by Sunstrand Data Control, Inc., is included in 

the following subsection. 

2.3.1 Description of Test Hardware 

Shown in Figure 20 is a schematic of the test arrange:ment for the 

measurement of the frequency and amplitude of the oscillations which 

occur in the tube s. 
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The most critical component of the test system was the Kistler Model 

206 "Piezotron" pressure transducer supplied by Sundstrand Data Control, 

Inc. This transducer is a dynamic pressure sensor with a high sensitivity; 

nominally in the 1400 to 1800 mVikg/cm
2 

range (100 to 125 mV/psi). Prior 

to using the transducers, calibrations were performed by Sundstrand using 

traceable secondary standards for the following parameters: 

Pressure Range 5.62 kg/cm 
2 • 

Resolution 5.62 x 10- 5 kg/cm 
2 • 

Sensitivity 1715 mV /kg/cm 
2 • 

• Linearity + 1% full scale 

• Rise Time 3 Ilsec 

• Low Frequency Time 
Constant 2.5 sec 

• Full Scale Output 
Voltage 8.0 V 

• Low Frequency Response 0.05 Hz 

• High Frequency Response 20 kHz 

For optimum operation of the Piezotron pressure transducer in this 

program, Sundstrand recommended the use of a m.odified ballistic mount. 

A schematic of this mounting system. is shown in Figure 21. The clearance 

shown in Figure 21 around the base of the transducer, and the entrance 

section from the tube opening to the sensing face of the transducer are 

the critical points of this mount. The clearance around the circum.ference 

of the transducer is 0.015 cm and the opening to the diaphragm. is 0.225 cm. 

diameter x 0.225 cm deep. This m.ount design minimized pressure transducer 

volume and satisfied the basic criteria of TAO testing that the volume of the 

pressure measurement system .shou1d not represent a significant part of 

the total volume of the tube being tested. The total vacant volum.e of the 

transducer mount system. was only 0.0459 cm.
3 

(0.0028 in
3

) whereas the 

minimum volume tube tested was 8.47 cm
3 

(0.517 in
3

). The transducer 

mount volume represented a maximum. of only about 0.5% of the total. The 

reason that this volume must be very small is to prevent the possibility of this 
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"extra" volume acting as a Helmholtz resonator with characteristics that 

could dampen the oscillations. The literature reviewed early in the program 

indicated that a tuned Helmholtz resonator could effectively stop all 

oscillations. This condition was undesirable for these tests. 

A schematic of the research dewar used for these tests is shown 

in Figure 22. The LHe dewar was procured from Cryogenic Associates, Inc. 

The boilof! loss of LHe under conditions of no external heat sources (tube, 

liquid level detector, lead wires, etc.) is 0.27 liters/hr and LN2 loss of 0.l5 

liters/hr. The dewar, with the neckplug installed, had a LHe capacity of 28 

liters. The dewar was filled from commercial 100 liter dewars of LHe through 

a standard vacuum jacket helium transfer line. 

The lower half of the internal (LHe) compartment of the dewar was 

constructed of aluminum with the upper half being made of low conductivity 

phenolic. The bi-material section was joined with an epoxy-type material 

rated for LHe temperature. 

The LHe dewar used was designed for minimum no-load bolloff rates. 

This characteristic permitted accurate measurement of the thermal acous.~ic 

oscillations effects since the total heating rate was primarily caused by 

thermal acoustic oscillations. The boil-off due to conduction only (no 

oscillations present) was small in most cases. The oscillations were started 

by lowering the tube further into the dewar until oscillations would occur. 

Following the oscillation frequency and amplitude measurement tests, the 

dewar static loss of LHe was far in excess of the rated 0.27 liters/hour. 

Cryogenic Associates personnel were consulted and concluded that 

permeation of GHe through the inner tank wall to the vacuum jacket increased 

the pressure in the superinsulation and decreased the insulation characteristics 

of this system. Consequently the original test dewar was no longer used in 

the program and additional heat leak measurements were conducted using a 

commercial LHe dewar. This approach limited these measurements to one 

tube o.d. size (0.953 cm or 0.375 in.). but both aluminum and stainless steel 
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tubes were tested for this effect. This will be discussed later in more 

detail in section 2.5. 

In reviewing the schematic of the test hardward in Fig.20, the signal from 

the Piezotron couples (with a gain ratio of 10: 1) was connected to seve tal 

components. They include: (I) one trace input of a dual trace oscilloscope; 

(2) a McIn·i!.V'sh audio amplifier which was calibrated for a 10:1 gain on the 

signal; (3) a true rms meter; and (4) an Ampex FM recorder. From the 

McIntosh amplifier, the signal was input into: (1) a second channel of the FM 

recorder, and (2) a frequency meter, or counter. The output signal from the 

FM recorder was input to the second trace of the dual trace oscilloscope. 

Although the dual trace oscilloscope appears on the schematic as two separate 

traces, in reality this unit was a single cathode ray tube (CRT) unit 

with dual trace capability. This allowed an overlay of the signals being 

obtained from both the unamplified source (Piezotron coupler) and the 

amplified source being input to the recorder. The recorder had a playback 

capability on the record mode (with a time lag in terms of milliseconds). 

By adjusting the "sync" feature of the oscilloscope and maintaining a 10:1 

ratio on the scales of the two traces, the two signals could be overlayed on 

the CRT with extreme accuracy. These signals were for monitoring 

purposes and were never used for data acquisition. 

All data for reduction purposes were obtained from the counter 

(frequency meter) and the true rms meter. The counter required a signal 

input of 10 mV to trigger it, which required that this signal be input from the 

McIntosh amplifier. This meant that the minimum raw data signal which 

could trigger the counter was only one r:nillivolt, thus allowing an oscillation 

indication to be detected on. this meter prior to being able to view it on the 

oscilloscope. This additional capability allowed both lower signal detection 

and higher accuracy level than using the oscilloscope r.Llone. 

Although, as mentioned earlier, the counter used in the system required 

at 10 mV input to trigger the unit, the 1 mV signallevel fed to the Mclntosh 
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amplifier was actually so low that the intensity of the oscillations at 

this level are of almost no consequence. The reason for ensuring that 

signal levels this low were dete cted was to enable the investigators to 

'determine more accurately the time of initiation of the oscillations. 

This capability proved to be of benefit when variations from the previously 

documented results of Bannister were observed, such as: (1) oscillations 

occurring at distances of the open end of the tube greater than 15 cm above 

the liquid level. and (2) amplitudes of the oscillations being a relatively 

strong function of this distance while the frequency was weakly dependent. 

The latter (frequency and amplitude dependence on distance above liquid 

level) was not anticipated from early theoretical prediction • 

The tubes tested during this program are shown in Table 1. As 

indicated. both stainless steel (type 304 CRES) and aluminum (606l-T6) 

were tested. Only stainless steel was tested for the length-to-diameter ratio 

of 1000 since for this case no conditions were predicted to exist for 

oscillations to occur from the analytical results. All tubes tested were 

seamless units. This type tubing has smooth interior surfaces and are 

generally more concentric than rolled tubes. 

2.3.2 Experimental Results 

The results of the experimental program showed that variations in the 

primary parameters not readily apparent from previous documentation were 

present in these tests, These include a distance from the liquid level 

dependence of both frequency and amplitude of the thermally driven 

oscillations. The frequency dependence was weak compared to the amplitude 

dependence. A 10 to 20% variation of frequency was typical. while a variation 

in excess of 100% of the minimum amplitude was not unusual. 

The ratio of total tube heat leak to conduction heat leak is obviously 

dependent upon the conduction heat leak. which is a function of the tube 

length, cross section area and length between hot and cold temperature 
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Table 1 

TUBES TESTED FOR THERMAL ACOUSTIC OSCILLATIONS 

Stainles s Steel (Type 304 CRES) 

Inside Wall Outside 
Diameter Thickness Diameter Length L/I.D. 

(cm) (cm) (cm) (cm) -
0.221 0.048 0.317 221 1000 

0.658 0.147 0.952 197 300 

0.658 0.147 0.952 99 150 

0.658 0.147 0.952 66 100 

Aluminum (6061-T6,) 

0.658 0.147 0.952 132 200 

0.658 0.147 0.952 99 150 

0.658 0.147 0.952 66 100 
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boundaries. The net heat leak caused by the oscillations were of 

comparib1e magnitude when comparing the stainless steel and aluminum 

0.952 cm o.d. tubes, but the conduction of heat through the aluminum tube 

is about an order of magnitude larger than the stainless steel. This was 

a dominant factor in determining the total heat leak. Both tubes were 0.147 

cm wall thickness. 

• Oscillation Intensity Measurements 

As pointed out in the discussion of the analytical model used for 

prediction of the oscillation onset criteria, the ratio Th/T c is of primary 

importance in predicting the intensity of the oscillations. For purposes of 

determining the values of Th and T c' a copper constantan thermocouple was 

used to measure Th and a temperature-dependent resistor (cryoresistor) 

was used to determine T • The cryoresistor was calibrated by NASA-
c 

MSFC prior to testing. The calibration curve for this unit is shown in Fig. 23. 

Because of the 45,7 cm long neckp1ug in the research dewar, the adual test set­

up appeared as shown in Fig. 24 ~ Since it was desirable that the capability exist 

to completely remove the tube being tested, the cryoresistor was mounted on 

the edge of the aluminum guide plate on the bottom of the phenolic mount 

which held the foam neckplug in place. The value of T was thus assumed 
c 

to be the mean difference between that measured by the cryoresistor and the 

value for LHe (4.2oK). The analytical predictions are ba.sed on a mean value 

of the temperature of that portion of the tube exposed to the GHe environment. 

The measured Th was taken at the mid-point of the portion of the tube 

exposed to ambient conditions. This temperature measurement was made 

with a copper-constantan thermocouple soldered to an adjustable clamp which 

forced the thermocouple bead onto the tube surface. Except for those cases 

where the temperature of the exposed part of the tube was intentionally 

heated or cooled, the typical measurement was within a few degrees of 

ambient at all times. This would indicate that even in the oscillatory mode, 

the gas interchange was not modifying the temperature of the gas in the tube 

enough to overcome the conduction to the gas from the tube. 
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\ 
\ 
\ Cryoresistor Serial No. 4501 -

\ 
NASA-MSFC Calibration 
Constant Current Source::: 10 PA 
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Fig. 23 - Calibration Curve of Resistance vs Temperature for Cryoresistor 
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... ~t---Piezotron 206 Transducer 

~estTube 

II 
1'1 II 
It 

" II 

" II 
I' 
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II I, I, I, 
" 'I 

" II 
II 
II 
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II 
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--Dewar Top 
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Cryoresistor~ "-Guide Plate 
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Fig. 24 - Schematic of Test Tube/Foam Plug Configuration 
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Results of the oscillation intensity tests are shown in Tables 2a through 

These tabulated results are shown in Fig. 25 as a function of the L /L 
c 

parameter. In this case, as in the analyti:ca1 predictions, L is that portion 
c 

of the tube actually extending into the helium cavity below the neckp1ug and 

L is the total tube length. The forms of the curves faired through the experi­

mental data in Fig. 25 do not tend toward any apparent systematic variation 

either as a function of L /L or the tube material. These type results were 
c 

not unexpected. The strong frequency and amplitude dependencies as a func-

tion of ullage volume, distance below the neckplug and distance above the 

LHe surface cannot be explained at this time. 

For example, examination of Table 2h reveals an interesting and un­

explained phenomenon. During the initial portion of testing, the intensity is 

seen to increase by a factor of 3 as the L /L ratio is increased from 0 to 
c 

0.154. While retaining the tube at the L /L = 0.154 position (15.2 cm), the 
c 

Piezotron transducer was rernoved to allow venting of gaBeous helium through 

the tube. During the process there was no insulation to retain the-tube in the 

cold condition. Also during the venting process the oscillations were initially 

audible while standing several meters away. As the tube cooled, the oscilla­

tions diminished in amplitude until they were no longer audible and a continuous 

stream of very cold vapm: could be seen being emitted from the tube. While 

oscillating in the audible range the pulses of cold gas were discrete and visible. 

When the transducer mount was replaced on the tube, the oscillations stopped. 

None were expected at this low Th/T c ratio. When the average temperature 

of the exposed portion of the tube approached ambient conditions, oscillations 

were expected to be self-initiated. This never occurred. Attempts to force 

the oscillations to start by using both external heat (to raise the Th/T c ratio) 

and mechanical perturbations were unsuccessful. 

At this point the quantity of liquid helium had dropped to approximately 

12 liters which corresponds to about 44% of the dewar capacity. In one of 

J.D. Bannister's studies, he had indicated there were times when his experi­

ment dewar had to be approximately 75% full (the total capacity is unknown) 
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Table 2a 

OSCILLATION INTENSITY TEST RESULTS 

Material 
L/D 
Inside Diameter 
Wall Thickne s s 

Th 
(oK) 

294 

294 

293 

293 

290 

= 
= 

304 CRES stainless 
1000 

= 0.221 cm 
= 0.048 cm 

f amp 

(Hz) 
2 

(kg/ cm ) 

No oscillations 

No 0 scillations 

No oscillations 

No oscillations 

No oscillations 

steel 

I 

(Hz-kg/ cm
2

) 

Attempts to thermally or mechanically induce osciliations unsuccessful. 

Following data after ,.., 4 hours equilibrium 

0 13.6 297 No oscillations 

15.2 13.6 297 No oscillations 

10.2 13.6 297 No oscillatiol1s 

12.7 13.6 296 No oscillations 

22.8* 13.6 290 18 0.0208 0.364 

*Open. end immersed in liquid. 

L = length of tube exposed to helium reservoir 
c 

T = temperature at bottom of neckplug 
c 

T h = temperature at mid-point of exposed tube 

f = frequency of oscillations 

amp = peak-to-peak value of pressure oscillations 

I = intensity of oscillations (f x amp) 
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L T 
c c 

(cm) (OK) 

0 13.6 

Elapsed time 

0 13.6 

7.62 13.6 

15.2 13.6 

25.4 13.6 

30.5 13.6 

40.6* 13.6 

33.0 13.6 

15.2 13.6 

[I 
LMSC-HREC TR D-390690-1I 

Table 2b 

OSCILLATION INTENSITY TEST RESULTS 

Material 
LID 
i. d. 
Wall Thickness 

= 
= 
= 
= 

f 

304 CRES stainless steel 
300 
0.658 cm 
0.147 cm 

amp I Th 
(kg/ cm

2
) (Hz - kg/ cm

2
) (OK) (Hz) 

296 30 .0784 2.35 

'" 1 hour 45 minutes 

296 29 .0861 2.50 

2'96 26 .1177 3.06 

298 25 .202 5.05 

298 23 .269 6.18 

298 21 .291 6.12 

298 10 .255 2.55 

297 21 . .291 6.12 

297 25 .179 4.46 

*Open end immersed in liquid. 

L = length of tube exposed to helium reservoir 
c 

T = temperature at bottom of neckplug 
c 

Th = temperature at mid-point of exposed tube 

f = frequency of oscillations 

amp = peak-to-peak value of pressure oscillations 

I = intensity of oscillations ( f x amp) 
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L c 
(cm) 

0 

5.1 

10.2 

15.2 

20.3 

25.4 

30.5* 

15.2 

15.2 
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T 
c 

(oK) 

13.6 

13.6 

13.6 

13.6 

13.6 

13.6 

13.6 

13.6 

13.6 
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Table 2c 

OSCILLATION INTENSITY TEST RESULTS 

Material = 304 CRES stainless steel 
L/D = 150 
Ld. = 0.658 cm 
Wall Thickness = 0.147 cm 

\ f amp I 

(kg/ cm
2

) (Hz-kg/ cm
2

) (oK) (Hz) 

296 43 0.1028 4.42 

296 38 .1310 4.98 

297 35 .1608 5.62 

297 33 .1690 5.58 

297 31 .1773 5.50 

296 30 .1392 4.18 

296 23 .0268 0.62 

298 35 .184 6.44 

284 35 .177 6.21 

I 

1 

j 

I 
1 
l 
I 

I 
i 

*Open end immersed in liquid. 

L 
c 

T 
c 

Th 
f 

amp 

I 

= 
= 
= 
= 
= 
= 

length of tube exposed to helium reservoir 

temperature at bottom of neckp1ug 

temperature at mid-point of exposed tube 

frequency of oscillations 

peak-to-peak value of pressure oscillations 

intensity of oscillations (f x amp) 
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i , 

L T 
c c 

(cm) (oK) 

0 13.6 

0 13.6 

0 13.6 

5.1 13.6 

5.1 13.6 

10.2 13.6 

15.2 13.6 

15.2 13.6 
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25.4* 13.6 

25.4* 13.6 
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5.1 13.6 

~--I-" ~----"'I--·"~" _., 
1 

'/ 

LMSC-HREC TR D390690-II 

Table 2d 

OSCILLATION INTENSITY TEST RESULTS 

Material 
LID 

= 
= 

i. d. = 
Wall Thickness = 

Th f 

(oK) (Hz) 

294 45 

292 42 

292 40 

291 36 

291 36 

289 33 

288 30 

287 30 

287 28 

290 16 

288 16 

288 36 

288 35 

6061-T6 aluminum 
200 
0.658 cm 
0.147 cm 

amp 

(kg/ cm
2

) 

.0646 

.0703 

.0762 

.1292 

.1292 

.2022 

.1857 

.1857 

.1841 

.1011 

.0962 

.1659 

.1728 

I 

(Hz-kg/ cm
2

) 

2.91 

2.95 

3.05 

4.66 

4.66 

6.68 

5.57 

5.57 

5.16 

1.62 

1.54 

5.97 

6.05 

I 
I 
l 
J 

I 
1 

I 
i 

j 
1 

*Open end immersed in liquid 

L c 
T c 
Th 
f 

arnp 

I 

= 
= 
= 
= 
= 
= 

length of tube exposed to helium reservoir 

temperature at bottom of neckplug 

temperature at mid-point of exposed tube 

frequency of oscillations 

peak-to-peak value of pressure oscillations 

intensity of oscillations (f x. amp) 
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Table 2e 

OSCILLATION INTENSITY TEST RESULTS 

Material ~ 

LID = 
i. d. = 
Wall Thickness = 

Th f 

(oK) (Hz) 

285 57 

288 53 

287 52 

287 45 

284 43 

280 38 

278 35 

281 35 

278 29 

6061- T6 aluminum 
150 
0.658 em 
0.147 em 

amp 

(kg! cm
2

) 

.0568 

.0599 

.0564 

.1112 

.1299 

.1891 

.2086 

.2077 

.0398 

I 

(Hz-kg! cm
2

) 

3.24 

3.18 

2.93 

5.00 

5.59 

7.19 

7.31 

7.27 

1.15 

f 

j 

I 
I 
i 
1 

1 

I 
i 

*Open end immersed in liquid I 
L c 
T c 
Th 

f 

amp 

I 

= 
= 
= 
= 
= 
= 

length of tube exposed to helium reservoir 

temperature at bottom of neckp1ug 

temperature at mid-point of exposed tube 

frequency of oscillations 

peak-to-peak value of pressure oscillations 

intensity of oscillations (f x arnp) 
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0 13.6 

2.5 13.6 

5.1 13.6 

7.6 13.6 
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Table 2f 

OSCILLATION INTENSITY TEST IE SULTS 

Material 
L/D 
i. d. 
Wall Thiekne s s 

Th 

= 6061-T6 aluminum 
= 100 
= 0.658 ern 
= 0.147 ern 

f amp I 

(oK) (Hz) (kg/ em
2

) 
2 

(Hz-kg l ern ) 

278 61 .0348 

294 61 .0340 

305 No oscillations 

290 No oscillations 
I I 

length of tube exposed to helium reservoir 

temperature at bottom of neekplug 

temperature at mid-point of exposed tube 

frequency of oscillations 

peak-to-peak value of pressure oscillations 

intensity of oscillations (f x amp) 
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Table 2g 

OSCILLATION INTENSITY TEST RESULTS 

Material = 6061-1'6 aluminum 
LID = 150 
i. d. = 0.658 cm 
Wall Thickness = 0.147 cm 

L T Th f amp I c c 
(kgl cm

2
) (Hz"'kg/ cm

2
) (cm) (oK) (oK) (Hz) 

2.5 13.6 285 49 .0794 3.89 

15.2 13.6 280 38 .2004 7.62 

15.2 13.6 271 38 .1891 7.19 

15.2* 13.6 181 35 .1106 3.87 

15.2* 13.6 138 35 .0431 1.51 

15.2* 13.6 105 34 .0365 1.24 

15.2* 13.6 83 34 .0232 0.79 

15.2* 13.6 81 No oscillations 

15.2 13.6 222 37 .1261 4.66 

15.2 13.6 261 38 .1602 6.09 

15.2 13.6 268 38 .1856 1.05 

* External portion of tube chilled with LNZ using jacket aro tmd tube. 

L = length of tube exposed to helium reservoir 
c 

T 
c 

Th 
f 

amp 

I 

= 

= 
= 
= 
= 

temperature at bottom of neckplug 

temperature at mid-point of exposed tube 

fr equency of oscillations 

peak-to-peak value of pressure oscillations 

intensity of oscillations (f x amp) 
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Table 2h 

OSCILLATION INTENSITY REST ~ULTS 

Material = 606l-T6 aluminum 
L!D = 150 
i. d. = 0.658 cm 
Wall Thickness = 0.147 cm 

L T T f amp I 

c c oh (kg! cm
2

) (Hz-kg! cm
2

) 
(cm) (oK) ( K) (Hz) 

0.0 13.6 289 52 .0544 2.83 

0.0 13.6 286 50 .0629 3.14 

7.6 13.6 286 42 .1468 6.16 

l5.2 13.6 280 37 .2022 7.49 

15.2 13.6 275 37 .1940 7.18 

GHe vented through tube prior to following readings 

15.2 13.6 181 No Oscillations 

15.2 13.6 211 No Oscillations 

15.2 13.6 238 No Oscillations 

15.2 13.6 257 No Oscillations 

15.2 13.6 273 No Oscillations 

15.2 13.6 278 No Oscillations 

Refilled dewar with LHe prior to following readings 

0.0 13.6 292 59 .0332 1.96 

0.0 13.6 288 57 .0357 2.04 

0.0 13.6 284 56 .0363 2.03 

0.0 13.6 284 55 .0370 2.03 

15.2 13.6 283 38 .1458 5.54 

Elapsed time = 50 minutes 

15.2 1 13.6 I 279 i 38 .1360 5.17 

Elapsed time = 110 minutes 

15.2 I 13.6 I a79 I 38 .1458 5.54 

Elapsed time = 165 minutes 

15.2 I 13.6 I 279 I 38 .1524 5.80 

Elapsed time = 190 minutes 

15.2 I 13.6 I .279 I 37 .1584 5.86 

Elapsed time = 230 minutes 

15.2 I 13.6 I 279 I 37 .1690 6.25 

Elapsed time = 280 minutes 

15.2 I 13.6 I 278 I 36 .1740 6.26 

L 
c 

T 

length of tube exposed to helium reservoir 

temperature at bottom of nec k plug 

= temperature at mid-point ,')f eXFfsed tube 

ORIGINAL PAGE IS 
OFPOORQU~ 

c 

Th 
f 

amp 

I 

= frequency of oscillations 

= peak-to-peak value of pressure oscillations 

= intensity of oscillations (f x amp) 
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0~05 

304 CRES Stainless Steel 
L/D = 300 
T

h
/T

c
-.33 

304 CRES Stainless Steel 
L/D = 150 
T IT '" 33 h c 

6061-T6 Aluminum 
L/D = 200 
Th/Tc -- 33 

6061-T6 Aluminum 
L/D = 150 
Th/Tc"'" 33 

0.10 0.15 

L /L c 

0.20 0.25 

- Experimental Measurements of Oscillation Intensity 
as a Function of L /L 

c 
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in order to obtain oscillations. To see if this was a possible "tuned volume" 

effect where a minimum ullage volume is required to have the oscillations 

exist, liquid helium was added until the 75% full condition was attained. During 

the refill process the oscillations were self initiated. The dewar then con­

tained approximately 40% more LHe than when the initial values shown in 

Table 2h were measured (75% full versus 520/0). There is a maximum differ­

ence of 39% in the intensity between the last data point prior to venting the 

helium and the data point identified as occurring 50 minutes following the 

refill process • 

Following the refill, an attempt was made to confirmed this ''tuned volume" 

postulated by allowing the oscillations to continue until the liquid level dropped 

below that when the GHe was vented. When the conditions existed where no 

oscillations could be forced to occur, the liquid level was at the 44% full point. 

Following an elapsed time of 4 hours 40 minutes, the liquid level had dropped 

to 38%, the oscillations were still occurring, and haci not reached the maximum 

value obtained earlier in terms of amplitude (and thus intensity). This occur­

rence neither proved nor di.sproved the ullage volume effect as being a damping 

device. The only conclusion which could be reached from this test was that the 

variables involved in the initiation and sustaining of the oscillations is still not 

clearly understood and that they are not repeatable to the point where one can 

duplicate the conditions and obtain exactly the same data consistently. 

The variation in intensity shown in Table 2h over the 280 minute period 

contains an unexplained variation. The values of L , T , Th and frequency 
c c 

are essentially constant during the entire period while the pressure amplitude 

is increasing and the liquid level dropping. The phenomenon of an increasing 

intensity for an increasing distance between the open end of the tube and the 

liquid level is exactly opposite of what is found in other cases of changing the 

separation distance by moving the tube as observed by Bannister (Ref. 14). 

The difference in these results must be a case of the changing L value being 
" c 

an overriding function. The analytical model developed for this study does 

not include this distance function. 
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• BoiloH Rate Measurements 

As was discussed earlier, the research dewar used for the portion 

of the tests in which measurement of the oscillation frequencies and ampli­

tudes were made could not be used for the measurement of the increas.ed 

boiloff rates caused by the oscillations. The static loss of LHe in the research 

dewar was in excess of the value which could be measured with a flowmeter 

calibrate9 ~o 6000 sccm. The calibration curve for the flowmeter used is 

shown in Figure 26. 

The test hardware was arranged to permit use of the commercial dewars 

in which the LHe was received. These dewars will accept a standard 0.953 

cm (3/8 in.) o.d. tube. The liquid access valve allowed a vertical insertion 

of the tube in the same way used on the research dewar. The dewar vent 

valve routed the boiloff to the flowrate measurement system. A schematic 

of this portion of the total system is shown in Fig. 27. The pressure oscilla­

tion frequency and amplitudes Were measured and monitored in the same 

manner as described in the previous section. 

PJrior to inserting one of the test tubes in the helium dewar the internal 

pressure was released and the dewar allowed to thermally equilibrate during 

an over-night period. Although the dewars are pressurized only about 20% 

above atmospheric, the sensible heat stored at this pres sure would have 

affected the test results. The tests also would have been impossible to run 

at this pressure level for the test arrangement as shown in Fig. 27 since there 

was no pressure control device used in the system. 

Following the equilibration period, the test tube was inserted in the 

liquid withdrawal opening on the commercial dewar. This is a valved 

fitting made to accept a standard 0.952 cm LHe transfer tube. With the 

compression O-ring fitting which is common on these dewars the tube 
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could be inserted any distance desired and held in place by tightening this 

fitting by hand. The entire system was allowed to equilibrate with the tube 

inserted the maximum distance possible without oscillations occurring. 

After equilibrium had been reached (usually another over.night period) the 

boiloff due to the conductive heat leak in addition to the static loss was 
i 

measured. Since the static loss had previously been measured, the difference 

between these two measurements was the net heat leak due to conduction 

down the tube and into the helium cavity. The results of these measure­

ment s are tabulated in Tables 3a and 3b. The tests were conduded using 

two different commercial dewars which resulted in two different static 

loss measurements. 

Probably the most significant finding which can be seen from these two 

tables is that the maximum net boiloff rates for both the stainless steel and 

aluminum tubes are es sentially the same. However, the conduction portion 

of the total for the aluminum tube is between one and two orders of magni· 

tude greater than the stainless steel tube. Because of this, the ratio of the 

heat transferred with and without oscillations for the aluminum tube was 

never in excess of 1.5 while that for the stainless steel tube approached a 

factor of 100. 

hl previous investigations where extremely large (approaching 1000) 

heat transfer ratios were projected, the results were based on extremely 

thin wall tubes. These tube wall thicknesses were generally an order of 

magnitude less than the ones used during these tests. The tubes used in 

the present tests, however, were more representative of flight type units. 

From the results of these measurements, the test results would in­

dicate that the net heat transfer to the liquid cryogen is probably a heat 

transfer difference rather than a straightf?rward ratio of the conduction 

term and oscillation· plus· conduction terms. This logic is based on the 
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Table 3a 

TEST DATA OF OSCILLATION INTENSITY EFFECT ON HEAT TRANSFER 

FOR I5TAINL]~SS STEEL TUBE 

Lh 
(ern) 

83.9 

68.6 

63.5 

55.9 

50.8 

50.8 

50.8 

50.8 

78.7 

73.6 

Lc £ 
amp I Net Boiloff 

2 2 
(em) (Hz) (kg/ern ) (Hz -kg/ ern ) (seem) 

63.3 0 0 0 35 

78.6 24 .0102 0.244 73 

83.7 21 .0162 0.340 89 

91.3 18 .0213 0.384 104 

96.4 14 .1651 2.312 3076 

96.4 14 .1535 2.148 2936 

96.4 14 .1371 1.920 2256 

96.4 14 .1304 1.827 1924 

68.5 42 .0261 1.096 385 

73.6 39 .0529 2.062 706 

0.658 em i.d. Type 304 CRES Stainless Steel Tube 

L/D = 225 

Static Boiloff Rate of LHe Dewar = 129 seem 

Statir. Boiloff with Tube/No Oscillations = 164 seem 
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Qtot, ose 

Qtu~e, eond 

0 

2.08 

2.54 

2.97 

87.9 

83.8 

64.4 

55.0 

11.0 

20.2 
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Table 3b 

TEST DATA OF OSCILLATION INTENSITY EFFECT ON HEAT TRANSFER 
FOR ALUMINUM TUBE 

Lh 
(em) 

61.0 

47.6 

40.7 

30.5 

30.5 

30.5 

15.2 

30.5 

40.7 

L f amp I Net Boiloff 
e 2 2 

(em) (Hz) (kg/em) (Hz-kg/em) 

71.1 0 0 0 
" 

84.5 29 .0206 .597 

91.4 21 .0677 1.422 

101.6 17 .1040 1 .• 768 

101.6 17 .0894 1.520 

101.6 17 .• 0793 1.349 

116.9 17 .0462 .785 

101.6 18 .0711 1.280 

91.4 21 .0676 1.420 

0.658 em i.d., Type 6061-T6 Aluminum Tube 

L/D = 200 

Static Boiloff Rate of LHe Dewar = 455 seem 

(seem) 

2315 

2585 

2770 

3225 

3125 

3025 

2405 

2515 

2545 

Static Boiloff with Tube/No Oscillations = 2770 seem 
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Qtot, ose 

Qtube, eond 

0 

1.117 

1.197 

1.394 

1.352 

1.308 

1.040 

1.087 

1.102 
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fact that although the intensities of the oscillations for the stainless steel 

and aluminum tubes were of comparable magnitude, the ratio of Q/Qt 

(heat transfer with conduction and oscillations/heat transfer due to con­

duction only) were between one and two orders of magnitude different, with 

the higher conductivity aluminum tube displaying a much smaller heat trans­

fer ratio. Regardless of this ratio being much smaller, the net heat leaks 

(for the combined conduction and oscillation contribution) were very nearly 

the same value. 

2.4 ANALYTICAL COMPARISONS WITH PREVIOUS INVESTIGATIONS 

This subsection presents a comparison of Lockheed's analytical 

calculations with theoretical and experimental results reported in the 

literature. The purpose of the comparisons is to: 

• Provide a validity check on the TAO c'Omputer program 

• Substantiate the model assumptions 

• Gain further insight into the mechanisms producing 
the 'Oscillations, and 

• lllustrate the potential influence 'Of the osci11atic.·,ns 
on cryogenic storage vessels. 

Comparison of the analytical calculations with results of previous investi­

gations must be made with caution. The overall complexity of the TAO 

problem, the assumptions made in analytical models, and the inherent 

differences in experimental programs can lead to invalid comparisons. 

The present analytical calculations are compared with results of tw'O 

previous studies: the theoretical an?;s of Rott (Ref. 21), and the ex­

perimental data of Bannister (Ref. 14;. 

Figure 28 is a compar~son of ~~,: . ..l stability diagram for helium (Fig. 

13) with results presented by Rott (Ref. 21). Rott's calculations are based 

on a second order linear theory and the present calculations use a full 

nonlinear numerical method approach. The agreement f'Or some ranges 
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of the parameters Th/T c and A, is good, but the shape of the curve is different 

for low values of A. Rottls curve bends back for A'" 10 at large Th/Tc while 

the present analysis shows a straight line. Also the range of Th/T c which can 

produce oscillations is larger than Rottls predictions for larger values of A. 

It is difficult to determine which shape is most nearly correct. Rottls linear 

theory may be invalid for some ranges of the A parameter, but the current 

analysis may also be borderline for large L/D ratios (small A values). Large 

L/D ratios, in practice, probably occur due to small diameter tubes. The 

assumption of viscous Navier-Stokes flow in very narrow tubes is questionable. 

However, the general agreement between the two predictions does tend to 

validate the range of parameters where oscillations can be expected. To use 

the curves the following procedure should be followed. (1) the Th should be 

calculated using room temperature where a relative large amount of tube is 

exposed to ambient conditions; otherwise Th is best chosen as 290oK. (2) T c 

should be chosen as an average of LHe temperature ,;u~d l30 K. (3) L /L should 
c 

be calculated using the actual length of tube exposed to cold environment. (4) 

Acoustic Reynolds number should be based on ;the acoustic velocity, density 

and viscosity of the gas at an average temperature between T c' and Th and the 

length L of the tube. (5) The L/D should be determined from the total tube 

length and the inside diameter. 

Figure 29 compares pressure amplitudes vs L/D with experimental 

data of Bannister (Ref. 14). These data were not taken with experimental 

conditions similar to those of the present study. However, a qualitative 

comparison should be useful for illustration. The present analysis prediction 

of P A is shown for Lc/L = 0.01 and Th/T c = 25. The data points of Bannister 

correspond to different reported test cases. It is not clear from Bannister IS 

paper exactly what each test case consisted of, or what L /L and Th/T ratios 
c c 

were used. LMSCls present calculations are all higher than the data he re-

ports. Private communications with Bannister have indicated that his ampli­

tude data may be somewhat low due to experimental problems. LMSCls 

calculations also indicate that this may be true. The quantitative difference 

between the LMSG calculations and the previously reported experimental 

measurements is of the order of 50%. 
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Bannister presents his heat transfer data as a plot of heat pumping 

rate versus oscillation intensity. These data were replotted as Q/Qt 

versus LID using the tube material properties corresponding to Bannisters 

specifications. Comparison with the present predictions is given in Fig. 30. 

The circles are the various data points reported by Bannister. Again the 

exact test conditions which produce the spread is not known. The dots and 

the solid line are the present calculations for a tube with perfectly insulating 

boundaries. The other symbols are for calculations made with varying 

amounts of the tube exposed to hot and cold temperatures. The percent hotl 

cold shown in the legend, i.e., 30% hot, 10% cold, indicates that 30% of the tube 

is exposed to room temperature, 10% is exposed to the cold temperature, and 

the middle 60% is insulated. This set of boundary values was used instead 

of the L IL concept in order to more correctly simulate the experimental 
c 

apparatus. 

The difference between the LMSC m.odel and Bannister I s experiments 

is less than 30% for all points. The calculations shown by the solid line are 

between Bannisters I data points for the mid-range LID ratios. The 

predictions are higher than his data for LID between 100 and 200 and for 

LID of approximately 500. The effect of the "percent exposed" parameters 

is to increase the QIQt above the solid line predictions which correspond 

to zero percent and indicates that an insulated tube will transfer less heat 

due to therm.al acoustic oscillations. However, the difference in relative 

heat transfer is small. The inclusion' in the m.odel of the proximity 

of the tube to the liquid surface can be an im.portant factor in obtaining a 

more favorable comparison of analytical and experimental heat transfer rates. 

2.5 COMPARISON OF LMSC THEORY AND EXPERIMENT 

This section presents a comparison of the theoretical predictions and 

experimental, data taken in this study. The comparisons cover three m.ajor 

categories: (l) existence of oscillations; (2) wave characteristics; and (3) effects 

on net heat leak. The comparisons are given in Figs. 31 through 37 which con­

tain the. information shown on the next page of text. 
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Fig. 32 - Comparison of Analytical and Experimental Oscillation Frequencies 
as a Function of Tube L/D for Constant L /L and Th/T c c 
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Fig. 33 - Comparison of Analytical and Experimental Peak-to-Peak Pressure 
Amplitudes for Constant L IL and LID for Parametric Th/T 
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Fig. 35 - Comparison of Analytical and Experimental Oscillation 
Intensities as a Function of Tube LID for Constant L IL 
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• Existence of oscillations, T JT c versus ~ (Ftg. 31) 

• Oscillation frequency versus L/DI (Fig. 32) 

• Pressure amplitude versus Th/T c' (Fig. 33) 

• Pressure amplitude versus Lin, (Fig. 34) 

• Oscillation intensity versus Lin, (Fig. 35) 

• Heat transfer ratio versus oscillation intensity, (Fig. 36) 

• Heat transfer ratio ver sus pressure amplitude, (Fig. 37) 

Most of the cases shown consist of comparing the data with theoretical 

predictions for the exact conditions of the experiment. However, in order to 

compare some of the parameters, independent of the many others, the experi­

mental data were cross plotted and interpolations were made. For example, 

the L IL ratio and the Lin ratio were simultaneously varied in some of the 
c 

experiments. A meaningful parametric comparison can be made only by 

fixing one ratio and varying the other. This technique does not introduce 

appreciable error into the data. Attempts to introduce "error bands" on the 

experimental measurements were not successful. The careful calibration of 

all the instruments should, however, render the data virtually free of this type 

of error. Bands on the other experimental errors could not be accurately 

obtained. 

Figure 31 is a plot of the temperature ratio, TJT
c 

versus the t::.. param­

eter. The solid line curve represents the theoretical stability diagram for 

helium as discussed in Section 2.2. The symbols are representative experi­

il"iGntgl cases shown for comparison. Any case which lies "inside" the curve 

should produce sustained oscillations according to the theory. The experi­

mental data points shown by the X symbols did produce oscillations, and the 

o symbol cases did not sustain the wave motion. A. complete set of experi­

mental points to verify the stability curve was not obtained; however, the data 

which were obtained show several facts and trends. 

The case ~ = 50 for varying ThlTc shows that the oscillations cease to 

exist. for T hiT c ratios less than 10, while the theory predicts about 9 for this 
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critical ;ratio. The 10% agreement of this data point is well within any error 

bands of theory or data. This close agreement suggests that the theoretical 

curve can be used with reasonable confidence for extrapolating cases which 

have not been verified experimentally. 

Most of the data were taken with Th/Tc .... 33. The remaining points on 

the curve of Fig. 31 are for constant T h/Tc with varying A. The range of L/D 

values shown cover 100 to 1000. All these cases shown should produce sus­

tained oscillations according to the theory. All of the cases for L/D = 150, 200 

300 did indeed oscillate as predicted. However, the extreme limits, L/n = 100, 

L/D = 1000 did not behave as predicted. These tubes produce sustained oscil­

lations for some of the L /L ratios, but did not oscillate at all for others. This 
c 

experimental behavior is as yet unexplained. This comparison does show 

reasonable agreement for most of the data taken. 

Figure 32 is a plot of the oscillation frequency versus length/diameter 

ratio for constant Th/T and L /L ratios. The theory consistently predicts 
c c 

higher frequencies than shown by the data. The largest difference occurs for 

L/D = 150 with the difference decreasing for the larger L/D ratios. The 

theory predicts about 48 Hz for L/D = 150 while the measurements give .... 40 Hz 

for aluminum tubes and 35 Hz for the stainVass tubes. The reason for the pre­

dictions being higher than the data is due to presence of the liquid helium in 

the experiments, while the theory does not model the liquid region. The 

proximity of the tube to the liquid surface has a marked effect on the fre-.. 
quency. Moving the tube closer to the liquid surface decreases the frequency. 

This most likely accounts for the discrepancies in Fig. 32. Due to the com­

plexity of the experimental apparatus, and instrumentation, no attempt is made 

to place error bands on the measured data. Such bands would contain more 

error than the data itself. 

A comparison of peak-to-peak pressure amplitude versus the temperature 

ratio Th/T is given in Fig. 33. For this comparison the L/D and L /L ratios c c 
were held constant to study the effects of Th/T c on amplitude. The data points 
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es sentially band the theoretical curve with two points falling below and most 

of the data falling above it. The amplitude increases as the tube is moved 

closer to the liquid surface. The theory then underpredicts the pressure 

amplitude since the liquid/vapor' interface is not in the analytical model. 

The agreement between theory and experiment appears to be better for pres-

sure amplitude than for oscillation frequency. Both theory and experiment 

predict shutdown of oscillations (P A ..... 0) for Th/Tc just below 10. 

Figure 34 compares pressure amplitude for varying length-to-diameter 

ratio for fixed T hiT c ~ 33. The data points band the theoretical predictions 

with the experiment showing slightly larger amplitudes for lower L/D values 

and slightly smaller amplitudes for larger L/D values. The agreement of 

these parameters is better than that shown in the previous figure (Fig. 33). 

The apparent rea:son for the better agreement is that the L /L ratio is 0.1 
. c 

for Fig. 34 and 0.154 for Fig. 33. This means that the tube was farther from 

the liquid surface for the cases shown in Fig. 34. The theory should thul':l be 

better as the tube gets farther from the liquid surface. This accounts for the 

better agreement shown in Fig. 34. 

The oscillation intensity (P A x f) as a function of length/diameter ratio 

is shown in Fig. 35. The curve shows that the theory consistently predicts 

larger intensities than the measured data. This is a direct result of the fre­

quency prediction shown in Fig. 32. The amplitude predictions were close to 

the data while the frequency predictions were' consistently high. The intensity, 

which is defined here is the amplitude-frequency product, is thus consistently 

higher than the data. For L/D = 300, the data show I ~ 4.8 while the theory 

predicts I ~ 7. The predictions appear to be better for the aluminum tubes 

than for the stainless steel tubes. 

A comparison of heat transfer ratio versus oscillation intensity is given 

in Fig. 36. The parameter Q/Qt is defined as the ratio of the total heat leak 

to the pure conduction (no oscillation) heat leak. The theoretical predictions 

are lower than the data for small intensities and higher than the data fo' large 
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intensities. However, the data points do band the theory and indicate quanti­

tative agreement. The heat transfer is increased by an order of magnitude 

for intensities -1.0 (atm-Hz) and by two orders of magnitude at I ~ 2.0. The 

agreement shown in Fig. 36 lends validity to its use in predicting heat transfer' 

due to thermal acoustic oscillations. If the oscillation intensity is known (i. e., 

from measurements), then the effect on the net heat leak can be accurately 

determined from this curve, without having to measure boiloff rates. 

Figure 37 compares the Q/Qt ratio as a function of pressure amplitude 

for a fixed LID. The agreement is much better for larger amplitudes (>0.10) 

than for smaller amplitudes «0.05). The theory most likely underpredicts 

the heat transfer for small amplitude oscillations because of the approximate 

sine wave boundary condition. 
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Section 3 

CONCLUSIONS 

The conclusions reached from this study are now summarized in three 

categories: (1) thermal acoustic oscillations phenomena including a summary 

of the implications for cryogenic storage systems, (2) experimental anomalies 

and (3) analytical methods. 

3.1 THERMAL ACOUSTIC OSCILLATIONS PHENOMENA 

• A literature review has revealed that thermal acoustic 
oscillations are a common occurrence in liquid helium 
storage systems. Most investigators have discovered 
very .large additional heat leaks because of oscillations. 

• The present study has shown by analysis and experiment 
that the oscillations do occur and can be sustained for long 
periods of time. 

• Thermal acoustic oscillations can potentially occur in any 
cryogenic system which contains a tube penetration. 

• The oscillations can be inhiated purely by thermal means, 
i. e., expansion of gas in a tube heated on one end and having 
an open end exposed to a very cold environment. 

• The stability of oscillations has been shown to be a function 
of the length/diameter ratio of the tube, the temperature 
ratio of warm end to cold end, the length of tube exposed to 
the, cold environment, the proximity of the tube to the liquid 
surface and perhaps external disturbances. 

o A stability diagram was derived for use in estimating the 
existence of oscillations in LHe apparatus. The analytical 
model can be used to construct similar diagrams for other 
cryogens. 

• Thermal acoustic oscillations produce large heat leaks to 
stored cryogens. Analysis and experiment have shown that 
as much as two orders of magnitude increase in heat transfer 
can occur if oscillations are present. 

• The frequency of the oscillations studied range from -2 Hz 
for large L/D ratios to -60 Hz for mid-range (L/D ~ 100) 
to as large as 100 Hz for shorter tubes. 
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• A warm-end to cold -end temperature ratio Th/T c - 10 is 

required to sustain oscillation in tubes with small L/D 
ratios. Longer tubes will oscillate with Th/T as low as 
-6. c 

• Pressure amplitudes (peak-to-peak) of -0.4 atm were ob­
tained for large L/D tubes (-500) while P A - 0.1 are 

measured for smaller L/D (-100). The amplitude correlates 
somewhat linearly with L/D. 

• Thermal acoustic oscillations can disturb the liquid cryogen itself 
by injecting mass causing stirring and apparent "turbulent-like" 
flow at the vapor/liquid interface. 

• The ratio of total heat transfer to pure conduction heat transfer 
correlates with oscillation intensity. Additional heat leaks 100 
times the normal (no oscillation) values can occur for intensities 
of -2. a atm-Hz. 

• The large heat leak produced by the oscillations could have signif­
icant effects on storage of cryogens for space missions such as 
the Tug. The boiloff rates could be large enough to cut the mis­
sion time short or prohibit it altogether. 

• The study has identified system parameters which are at the 
designers disposal for possibly preventing oscillations from 
occurring: 

a. A T hiT c ratio below about 6 should prevent sustained 

oscillations. This is accomplished most readily by 
cooling the closed end of the tube. 

b. The L /L ratio should be kept small, i. e., minimize 
c 

the length of tube exposed to the cold environment. 

c. Tubes with small L/D ratios (less than 25 for example) 
are less likely to induce oscillations. 

d. The open end of the tube should not be placed close to 
the liquid surface. This will minimize stirring if 
oscillations do occur. 

e. The oscillations can be damped by occasional venting 
through a valve, etc., at the closed' end of the tube. 

3.2 EXPERIMENTAL ANOMALIES 

• Certain of'the tubes tested could be made to oscillate as pre­
dicted, while others (L/D = 100, LID = 1000) could not. This 
is a s yet unexplained. 
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• The initiation of the oscillations appears to be a function of 
the amount of cryogen in the storage vessel. Some tubes 
would produce oscillations regardless of the percent full of 
the dewar, while other s required at least 50% by volume 
of liquid helium. 

• The internal pressure in the dewar apparently has some in­
fluence on sustaining the oscillations. The exact nature of 
this influence was not defined. 

• The heat transfer ratio (Q/Qt) for the aluminum tubes was 

found to be much lower than that for the stainless steel 
tu'bes. This is a direct result of the much larger (factor 
of 10) conductivity of aluminum. 

• Oscillations could be easily initiated by moving the tubes 
close to the liquid and then withdrawing them. 

ANAL YTICAL METHODS 

• An analytical model of thermal acoustic oscillations was 
developed. An efficient numerical method was devised for 
solving the nonlinear partial differential equations. 

• The nonlinear model, apparently the first successful attempt, 
allowed a theoretical stCl.bility curve to be obtained. 

• The TAO/GSA computer program system was developed as 
a tool for use in understanding and explaining the ppysical 
phenomena of thermal acoustic oscillations. 

• A parametric analysis revealed the dimensionless groups 
which govern the oscillations to be: 

T.!T - ratio of warm end temperature to cold end 
c temperature 

L/D -length-to-diameter ratio of tube 

L /L - ratio of tube length exposed to cold environment 
c to total length 

Re - acoustic Reynolds number, and 

. i ~Re/(L IL) 
.6. = LID c - dimensionless parameter correlating 

the stability of oscillations 

• Comparison of analytical prediction to LMSC experimental 
data and to those data of previous investigations has shown 
quantitative agreement for most situations. 
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RECOMMENDA TrONS 
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This study was successful in achieving its original objectives. In addi­

tion, however, other aspects of the thermal acoustic oscillations phenomena 

were identified but not quantified. The following summary list contains recom­

mended additions to the study just concluded. These areas should be investi­

gated to further the understanding of the thermal acoustic oscillations 

phenomena itself and to provide needed additional quantitative data to de­

signers of cryogenic storage systems for space flight. The recommenda-

tions are summarized in two categories, (1) analytical methods and (2) 

experimental program. 

4.1 ANAL YTICAL METHODS 

Task 1: The TAO program does not include the effects of the tube 

proximity to the liquid surface. The results of the present study 

have identified this factor as being significant for initiation of oscil­

lations and for characterizing the frequency and amplitude. This 

task recommends an extension of the existing TAO model to include 

the variable distance of the open end of the tube from the liquid 

cryogen. This will be formulated as a boundary condition for the 

Navier-Stokes equations. A numerical scheme utilizing successive 

overrelaxation will be developed for conver ging the solution. This 

extension to the mathematical model will be added to the TAO com­

puter program. 

Task 2: This task proposes to analyze a selected matrix of para­

metric cases using the revised TAO program. The results obtained 

will be compared to the previ<ms solutions which neglect the liquid 

level distance and this effect will be quantified. 

Task 3: This task will utilize the additional data obtained from the 

recommended e~perimental program given in Section 4! 2. The wave 

characteristics data recorded on FM tape will be converted to digital 

format. The digitized data will be processed by the General Statistical 

Analysis (GSA) program to obtain the power spectral density. This 

approach will allow a detailed examination of the characteristic s of the 

experimentally measured waves. Results of this task, presented as 

power spectral density plots, will identify the major frequency content 

of the pressure waves and also the secondary wave forms which have 

been discovered. 
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Task 4: This task recommends utilizing the TAO program to analyze 
systems using cryogens other than liquid helium. A matrix of cases 
can be processed using nitrogen and hydrogen as the fluids. Results 
can be compared and contrasted to the helium data. 

4.2 EXPERIMENTAL PROGRAM 

Task 5: Additional experimental measurements similar to those 
already obtained are needed to verify the existence diagram. This 
task recommends obtaining data for varying ratios of the warm end 
temperature to cold end temperature for parametric values of the 
Ll parameter. The data can be obtained using the research dewar 
and the existing tubes. The warm end temperature can be controlled 
using an LN2 jacket as was done for the one case studied previously. 
This task will consist of approximately 25 data points to experimentally 
define the curve of Fig. 31. 

Task 6: The results of selected experimental cases will be recorded 
via FM tape. The cases to be recorded will be selected to span the 
range of frequencies from -1 to 100 Hz. The FM data will be ana:­
lyzed using the approach described in Task 3. 

Ta.sk 7: Additional measurements of boiloff rate (hence heat transfer 
data) need to be obtained for tubes having different wall thicknesses 
The boiloff data obtained in the current study was liinited to one tube 
diameter. These data will be taken for a range of LID ratios from 100 
to 300 and correlated with theoretical predictions. 

Ta sk 8: The study of Bannister, using a gla s s dewar for visual ob­
servation, proved to be invaluable in the present work. In light of the 
additional knowledge gained in the LMSC study, it is recommended 
that a similar experiment be conducted. A glass dewar with a tube 
penetration will be used and the oscillations will be photographed using 
a shadowgraph technique. Regions of denSity gradient will be visible 
as dark and light spots on the movie film. Interaction of the oscilla­
tions with the liquid surface cat:). also be seen. This task is a virtual 
necessity if g,n understanding of this mechanism is to be obtained. 

The task summaries listed here constitute a logical extension to the 

work just completed. Due to the common occurrence of thermal acoustic 

oscillations, the large heat leaks they cause and the potential damage to 

space missions, it is recommended that these tasks be performed. The 

results will be documented and made available for use in designing around 

the potentially hazardous environment caused by thermal acoustic oscillations. 

99 

g 
l! 
)~ 
)' 
n 
" H 

ii 
11 
H' 
~ i 

; :~ 

j 
1 
1 
l 
j 
1 
1 
i 
J 
! 



r 

I 
I 
I····' , : , 

J .. 
1:11 
) .. 
, . 
I 
[ 

l 

!~ .... ' I : 
i .' 

1 i I, . .. 1 

I I" 1'. ~ 

~_ii 

............. ---~--,~T .~~------. T~ 

LMSC-HREC TR D390690-Il 

Section 5 

REFERENCES 

1. Sondhauss, C., "Uber die Schallschwingun.zen der Luft in erhitzten 
Glasrohren and in gedeckten Pfeifen von ungleicher Weite," Ann. Phys., 
Vol. 79, 1850, p. 1. 

2. Rayleigh, Lord, "The Explanation of Certain Acoustical Phenomena," 
Nature, London, Vol. 18, 1878, p.319. 

3. Taconis, K. W. et aI., "Measurements Concerning Vapor-Liquid Equilib­
rium of Solutions of He3 in He4 below 2.190 K," Physica; Vol. 15, No. 8-9, 
1949, p.733. 

4. Kramers, H.A., "Vibrations of a Gas Column," Physica, Vol. 15, No. 11-12, 
1949, p.971. 

5. Wexler, Aaron, "Evaporation Rate of Liquid Helium I," J.Appl. Phys., Vol. 22, 
No.12, December 1951. 

6. Clement, J. R., and J. Gaffney, "Thermal Oscillations in Low-Temperature 
Apparatus," Adv. Cryogen. Eng., Vol. 1, 1954, p.302. 

7. Trilling, L., "On. Thermally Induced Sound Fields," J. Acoustical Soc. Am., 
Vol. 27, 1 955 • 

8. Chu, Boa-Teh, "Analysis of a Self-Sustained Thermally Driven Nonlinear 
.. Vibration," Phys. Fluids, Vol. 6, No.l1, November 1963. 

9. Ditmars, D.A., and G. T. Furukawa, '!Detection and Damping of Thermal 
Acoustic Oscillations in Low-Temperature Measurements," J. Research, 
NBS, Vol. 69C, No. I, 1964, p. 35. 

10. Feldman, K. T., Jr., "A Study of Heat Generated Pressure Oscillations in 
a Closed End Pipe," Ph. D. dissertation, University of Missouri, Columbia, 
F ebruar y 1966. 

11. Feldman, K. T., Jr., "Review of the Literature on Sondhauss Thermoacoustic 
Phenomena,'! J.Sound Vib., Vol. 7, 1968, pp.71-82. 

12. Feldman, K. T., Jr., "Review of the Literature on Rijke Thermoacoustic 
Phenomena," J. Sound Vib., Vol. 7, 1968, pp.83-89. 

100 



r 

I 
I 
[ 

[ 

[ 

I 
[ 

[ 

I 
,..,.. 

i 
""'" 
~ 

..,.. 

.., 
~ 
"j 

1"', • 
ill , .. 

It 
W . "' , 

a; i.: ! 

, ~ -I 

WNW'" 

LMSC-HREC TR D390690-11 

13. Feldman, K. T., Jr., and R. L. Carter, "A Study of Heat Driven Pressure 
Oscillations in a Gas," J.Heat Trans., August 1970, pp.536-541. 

14. Bannister, J. D., "Spontaneous Pressure Oscillations in Tubes Connecting 
Liquid Helium Reservoirs to 3000 K Envi.l.·onments ," Bulletin Int. Institute 
Refrigeration, 1966 -5, p. 127. 

15. Larkin, B.K., "Heat Flow to a Confined Fluid in Zero Gravity," Progress 
in Astronautics and Aeronautics, Thermophysics of Spacecraft and Planetary 
Bodies, ed. by G. B. Heller, Vol. 20, 1967. .. 

16. Thurston, R.S., and J. D. Rogers, "PrBs~ure Oscillations Induced by Forced 
Convection Heating of Dense Hydrogen}" Ad\!"~~C~yo. Eng., Vol. 12, Plenum 
Press, New York, 1967, p.438. 

17. Thullen, P., and J.L. Smith, Jr., "Model for '!'hermally Sustained Pressure 
Oscillations Associated with Liquid Heliun1.. t/ Adv. Cryo. Eng., Vol. 13, 
Plenum Press, New York, 1968, p.215. 

18. Rott, N., "Damped and Thermally Driven Acoustic Oscillations in Wide and 
Narrow Tubes," ZAMP, Vol. 20, 1969, pp.230. 

19. Mortell, M. P., "Resonant Thermal-Acoustic Oscillations," Int. J. Eng .Sci., 
Vol. 9, Pergamon Press, Great Britian, 1971, p.175. 

20. Collier, R. S., "Thermally Induced Oscillations in Cryogenic Systems," 
NBS Report 10749, National Bureau of Standards, Washington, D. C., 
April 1972. 

21. Rott, N., "Thermally Driven Acoustic Os cillations. Part 11: Stability Limit 
for Helium,"ZAMP, Vol. 24, 1973, p. 54. 

22. Von Hofin'lann, T., U. Lienert and H. Quack, "Experiments on Thermally 
Driven Gas Oscillations," Cryogenics, 1973 . 

23. Spradley, L. W., "ThermQacoustic Convection of Fluids in Low Gravity," 
AIAA paper No. 74-76, AlAA 12th Aerospace Sciences Meeting, Washington 
D.C., January 1974. 

24. Seymour, B. R. and M. P. Mortell, "Resonant Acoustic Oscillations with 
Damping; Small Rate Theory," J. Fluid Mech., Vol. 58, Part 2, 1973, p. 353. 

25. Seymour, B. R., and M. P. Mortell, "NonUnear Resonant Oscillations in 
Open Tubes ," J. Fluid Mech., Vol. 60, P;.rt 4, 1973, p.733. 

26. Hendricks, R. C., R. J. Simoneau and R. V. Smith," Survey of Heat Transfer 
to Near-Critical Fluids," NASA TMX-526l2, 1969. 

27. Thuraisamy, V., "Thermodynamic Flow of Super-Critical Oxvgen in Zero­
Gravity," Bellcomm, TM-72-1022-1, Bellcomrn, Inc., Washington, D. C., 
March 1972. 

101 

J , 



r 

I 
[ 

I 
I 
I 
' ... ~ 

1\'; .. .. ~ 

I 
il··· 1 . 

I 

........ * .... F 

, 

LMSC-HREC TR D390690-II 

28. Knudsen, S. R., liThe Effects of Viscosity and Heat Conductivity on the 
Transmission of Plane Sound Waves," .T.Acoust. So('. Arn., Vol. 26, 1957. 

29. Luikov, A. V., and B. M. Berkovsky, "Thermoconvective Waves," Int. J. 
Heat Mass Trans., Vol. 13, 1970. 

30. Glushkov, 1.5., and Y. A. Kareer, "Acoustic Instability in a Non.,.Adiabatic 
Gas," Translated from Teplofizika Vysokikh Temp~ratur, Vol. 8, No.5, 
September 1970, p.957, (Plenum Press, New York). 

31. Carrier, G. F., "The Mechanics of the Rijke Tube," Quart. Appl. Math., 
Vol.. XII, No.4, 1955. 

32. Shields, F. D., K. P. Lee and W. J. Wiley, "Numerical Solution for Sound 
Velocity and Absorption in Cylindrical Tubes," J.Anoust. Soc. Am., Vol. 37, 
No.4, 1965, p.724. -.", 

33. Stewart, E., P. StewCl.rt and A. Watson, "Thermo-Acoustic Oscillations 
in Forced Convection Heat Transfer to Supercritical Pressure Water," 
Int. J. Heat Mass Trans., Vol. 16, 1973, p. 257. 

34. 

35. 

36. 

37. 

Khalatnikov, 1. :tvI., and 1. N. Adamenko, "Theory of the Kapitza 
Temperature Discontinuity at a Solid Body-Liquid Boundary," 
Soviet Physics JETP, Vol. 36, No.3, 1973. 

Norton, M. T. , "Frequency of Oscillations in a Dewar Ven.t Line, 
Closed on the Warm End, " NBS Cryogenic Eng. Lab Note, 1965. 

Howsen, R. J., ItTherm~lly Sustained Pressure Oscillations in Liquid 
HeliUlTI Anoaratus," M. S. thesis, Massachusetts Institute of Technology, 
Camb ridg'e", May 1968. 

Brashears, M. R. et al., "Wake Vortex Transport Considerations and 
Meteorological Data Analysis," LMSC-HREC TR D390424, Lockheed 
Missiles & Space Company, Huntsville, Ala., November 1974. 

102 

, 

j: 
, 

; I 

___ ~U 

j 
j 

1 
1 
l 



r 

r 
, 

i , 

I , 
." i . 
" 

I 
I 
I 
I' . • 'J 

I 
r· ,,~ 

"".' 

w~j 

lH 
Utf 

1~' 

i' 
-i.1 

.tf!I ~~ 

\ 
111." 

,,'" ! ' ')1 

'J; 

n'l 
l;' 

1iI.1f 

""" i:i 

.iil' 

J: 
I ,. I!: 

~ ; "i 

l' \ 

W 

I \( 
, , 

r 
LMSC -HREC TR D390690-II 

Appendix A 

MATHEMATICAL FORMULATION OF THE TAO MODEL 
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Appendix 

A.I MATHEMATICAL MODELING 

This mathematical model of thermal acoustic oscillations consists of 

a set of dif£~rential oquations and boundary conditions. A model of such a 

phenomenon must be detailed enough to provide an accurate representation 

of the :physif.;a.l phenomenon and yet be simple enough tha.t it can be analyzed 

to yield information about the phenomenon. This combi:!la.tion of requirements 

cannot be met completely for most real world problems. Some compromise 

of the two must be used to satisfy, in part, both requirements. The thermal 

acoustic oscillations problem is a prime example of this type of modeling. 

The TAO model used in this work is based on the Navier-Stokes equa­

tions for viscous, compressible fluid. These nonlinE:lar differential equations 

are coupled to the energy equations since the wave rnotion is induced by thermal 

ef£ectt1.. This set of coupled nonlinear partial differential equations cannot be 

solved in analytical "closed form." The approach taken in this analysis is to 

invoke a numerical method and use a digital computer to obtain solutions. 

The purpose of this appendix is to present the details of the mathe­

matical model for the TAO problem. The assumptions which are necessarily 

made, the governing equations, boundary conditions, the numerical algorithm 

and the cmnputer program are discussed. The required inputs and the optional 

~utputs are also defined. The General Statistical Analysis Program (GSA) 

which determines the frequency· content of the waves is also discussed. 
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A.Z EQUATIONS AND BOUNDARY CONDITIONS 

The fluid mechanics model begins with the conservation equations of 

motion, continuity, and energy in Eulerian coordinates. For a viscous, heat 

conducting Newtonian fluid, these equations are found in standard text books 

(Refs. A-I and A-Z) in vector form: 

Navier-Stokes Equation 

~ 

DV -" ~ ~ 
PI5t = F -VP -v x [IL(V' x V)] +V[(:\ + ZIL) v .V] (A-I) 

Continuity Equation 

~ + P(V • V) = 0 (A-Z) 

Energ y Equation 

(A-3) 

Equation of State 

p = P(P, T) (A-4) 

These equations, with appropriate boundary conditions, describe the 

flow and thermal behavior of the fluid. These are, of course, highly nonlinear 

and strongly coupled equations such that general solutions are not possible. 

~ppropriate assumptions and simplifications must be made if any solution to 

the TAO problem is expected. 

The geometric configuration and coordinate system used in writing the 

model equations is given in Fig. A-I. A cylindrical tube with one end closed 

and the other end open comprises the geometry. The optional case of a tube 

closed on both ends is included as a subset of the model. A cylindrical 
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Fig.A -1 - Geometric Configuration and Coordinate System 
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coordinate system, r, z, is used with the radial coordinate, r, origin at the 

center of the tube and the axial, z, origin at the closed end. The flow in the 

tube is chosen to be axisymmetric such that a three-dimensional model is not 

required. The flow is also assumed to be laminar. This assumption appears 

to be justified based on past experimental observations. 

The model is formulated by considering the flow of a gas in the tube 

driven by large thermal gradients imposed on the ends of the tube. Inter­

action of the gas phase with the liquid surface is taken into account in an 

approximate manner. The liquid region is modeled as a large volume of cold 

gas (at LHe temperature). An appropriate boundary condition is formulated 

following this as sumption. 

The Eulerian formulation of the equations is adopted with the inclusion 
, 

of a time-dependent term. This ~pproach allows the analysis of the transient 

as well as the steady state oscillations. The assumptions made in formulating 

the TAO model are summarized as follows: 

• Axisymmetric configuration 

• Viscous, compressible, heat conducting fluid 

• Laminar flow of a Newtonian fluid 

• Stokes viscosity relation is used 

• Perfect gas law is invoked with variable compressibility 

• No radiation or internal heat sources 

• No viscous dissipation of energy 

• Gravitational body forces are negligible, and 

• Open end of tube is exposed to a large volume 
of cold gas. 

Each of these assumptions has been carefully evaluated and a tradeoff analysis 

made. The assumptions appear to be well justified within the defined scope of 

work of this study. The results which have been obtained and compared with 

experimental data provide the true justification of these assumptions. These 

comparisons are in the main text of this report. 
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The Navier -Stokes equation for a Newtonian fluid contain two viscosity 

coefficients: 

#J. = shear viscosity or first coefficient 

A = dilatat.ional viscosity or second coefficient 

or we may define 

K = ZIJ. + 3A 
3 

as a bulk coefficient of viscosity. 

The classical Stokes hypothesis yields a relation between the two coefficients 

A = - ZP,/3 

A literature survey and a brief analysis have shown that: 

(1) for an ideal monatomic gas K = 0 

(2,) for an ideal polyatomic gas A -- 0 

Since the present study is direded primarily toward helium (He), the assump­

tion that A ;; -Zp,/3 appears to be justified. The TAO model is derived by apply­

ing the assumptions to the full Navier-Stokes equations. 

Figure A-2 gives the equations which comprise the mathematical model 

for thermal acoustic oscillations. These are shown in terms of dimensionless 

variables which are used in all computation. Figure A-3 summarizes these 

dimensionless variables and groups. Equation (A-5) represents the conser­

vation of mass in the tube. Equations (A-6) and (A-7) are the radial and axial 

components of the momentum conservation equations. Equation (A-B) is a 

mathematical representation of the energy conservation law. The ideal gas 

law in dimensionless form, (Eq. (A-9», completes the set of governing 

equations. 
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Mass 

~ S. 8 a at + r 8r (rpu) + 8z (pv) = 0 (A-S) 

Radial Moment~ 

Axial Momentum 

a S. 8 a - a P s.:. [a 2 1 a 1 a 
2 

] at (pu) + r 8r (rpuv) + 8z (puv) = - az + Re 8r~ + r a; + i2 az~ (A-7) 

Energy 

[~ a a] [~ a av] . at +~8r (puT) + az (pvT) = - ('Y-l)P r 8r (ru) + 8z 

+ 'Y [~8T ( aT) 8
2T} 

Re Pr r 8r r 8r + a z 2 (A-8) 

State 

P = pT (A-9) 

Fig. A-2 - Navier-Stokes Equations for Cylinder (Dimensionless Variables) 
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z = 

u = 

z'/L, r 
~ 

= r'/R', t = t'/L'~~ 

u' 
v = 

P = p'/p' T = T'/T' 
0' 0 

~ = 2(L/D), 'Y = e' /e' p V 

= p'/p' o 

'Y e' Il' 
V 

p' L, .. I !RT'/m 
Re = 0 ~ 0 Pr = k' Il' 

(Primes (') indicate variables with physical dimensions. 
Unprimed variables are dimensionless.) 

(A.IO) 

]'ig. A-3 - Dimensionless Groups for Navier-Stokes Equations 
Used in TAO Model 
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The mathematical model must contain appropriate boundary conditions 

in order to represent the physical problem and to allow a solution to be obtained. 

These are iogically organized into: (I) thermal boundary condition; and (2) flow 

boundary conditions. 

The l'mal Boundary Conditions 

or 

Flow Boundary Conditions 

T(r, z = 0) = Th 

T(r, z = L) = T c 

~; = 0 at r = 0 

aT 
~r = ql at r = R u oss 

T = Th at r = R 

u =v = 0 at z = 0 

u =v = 0 at r =R 

u = 0 at r = 0 

av a r = 0 at r = 0 

p = p [( I + A sin (w t + t/»] .. at z = L w m p 

(A-Il) 

(A-12) 

The boundary conditions are straightforward except for the pressure at 

the open end of the tube. The sinusoidal profile with amplitude, A , frequency, 
p 

w, and phase angle, t/>, is used. These parameters are used in an iteration 

process to converge the solution. The Ap' wand t/> ~arameters are obtained 

by iteration from an initial estimate for the wave characteristics. This itera-

tion is discussed further in Section A.4. 

The correct calculation of the heat transfer at the open end of the pipe 

should include the effects of mass moving in and out of the pipe. This calcu­

lation has been incorporated into the TAO program. The heat pumped out by 
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the oscillations is given by 

1'/2 

Qout = I (pv)w Ag Cp Tm d'T 

o 

and the ilheat" coming into the tube is 

(pv) ACT d'T. w g P c 

(A-l3) 

(A-14) 

In order to compute the effects of oscillations on the heat transfer, the pure 

conduction rates are computed and ratios are taken to form the Nusselt num­

ber. The conduction rate in the gaB column is 

Q = g,c 

k A DoT g g 
L 

and the conduction rate down the tube wall is 

6 = T,c 

The Nusselt number can now be defined as 

Nu 
= l/T[(Qout + Qin~] 

Q . +0 
g,c T,c 

(A-lS) 

(A.16) 

(A.l7) 

These calculations are based on integrating the energy transferred over one 

complete cycle. This accounts for the hot mass moving out of the pipe and 

being replaced by cold fluid. 

These equations, boundary conditions and heat transfer calculations 

constitutes the mathematical model for thermal acoustic oscillations. 
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A.3 NUMERICAL SOLUTION METHOD 

The numerical method employed in this analysis is based on explicit 

finite difference approximations. The use of the unsteady state equations 

allows a forward-time-marching algorithm to be used since the problem is 

initial valued in time. Values of the dependent variables are specified at 

time t at a finite number of discrete points on a numerical grid. The o 
differential equations are approximated at these grid points by difference 

equations .. The algorithm used here is based on a combination of techniques 

presented in the literature plus some new innovations. An excellent review 

of finite difference approximations for the Navier -Stokes equations is given 

by Torrance (Ref. A-3). However, these techniques have been applied only 

to the quasi-incompressible Boussinesq equations. The finite difference 

approximations used in the present study are patterned after the method of 

Spradley and Churchill (Ref. A-4). The technique is conditionally stable, 

free of spatial mesh restriction and is numerically conservative . 

A node-centered finite difference grid (shown in Fig. A-4) is used to 

write the difference equations. All flow variables are evaluated at the 

center of a cell and differences are taken across a cell using the known 

values at adjacent cells and/or interpolated values at the boundaries of the 

cells. The boundary conditions, however, are specified at the walls them­

selves and not at the center of the cell acljacent to a wall. In writing the 

difference equations, the subscripts i, j refer to sp;:ltial locatio.lHJ on the 

r, z grid, respectively, and the superscript n denotes time, n~t. Trnt .~rid 

points are thus defined as 

The grid spacings ~r, ~z are constant but can be distinct. 

Forward time differences are used to approximate the unsteady 

derivatives (next page of text): 
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a..n+l f.1.+l - 1,1. 
1 "" 1J 1] 

at.. '" ~t 
(A.19) 

1J 

where f is any of the flow variables pu, pv, p, T. This approach yields a 

finite difference approximation which is first order in time. 

The particular form of the difference operators depends on the type 

of term to which it is applied. There are basically three types of terms in 

the governing equations - first order terms, second order terms, and con­

vection terms. Table A-I summarizes the type of terms and shows the finite 

difference approximations which al'e us ed in this study. Centered differences 

are used whenever possible but these cannot be applied to the convection terms. 

A flip flop difference scheme is used for the convection terms in order to pre­

serve numerical stability in the explicit approach. This conservative flip flop 

method is applied to all the convection terms in the momentum and energy 

equations. Central differences are used in the continuity equation because 

the pu and pv terms that appear are evaluated at time n+1. This equation is 

effectively implicit but can be evaluated explicitly since (pu) n+l, (Pv)n+l are 

known and pn+l is to be determined. This technique is conditionally stable 

and conserves mass identically .on a numerical grid. 

The difference operators for a cell adjacent to a boundary requires a 

special form. The technique employed here consists of obtaining a value at 

a cell boundary by ,averaging over two adjacent cells and then differencing 

across the cell. For example: 

21 (~1' + ~2') - f1. 
) J WJ (A.20) 

is used to compute,8f/8r for the i=1 cells. This form assumes f1 . is a pre-
WJ 

scribed boundary condition along 1'=0. This form is thus used for the pu, pv and 

T differences for cells adjacent to solid boundaries. The T differences for cells 

adjacent to a wall are determined by calculating (T~ 2 - T~ 1)/ ~y and then aver-
1, 1, 

aging with the known gradient at the wall itself. The pressure differences ap/ar, 
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Table A-l 

FINITE DIFFERENCE APPROXIMATIONS 

Type of Term 

First Order 

Second Order 

Convection 

Notes: 

n 
U . ..t...! • = 
l~,J 

Differential 
Form 

af 
ax 

a ax (uf) 

1 ( n n ) 2 u, ,+u'+l ' 
1, J 1_, J 

Finite Differential Approximations 

(f?+l '.- £? 1 ,)/2.6.x ) 
1 ,J 1-, J 

(e+ l ' - 2 e , + e 1 ,)/(.~x)2 
1 ,J ' 1, J 1-, J 

(U?+l . f?+l . - u~ 1 • e.)/.6.x if u~, < 0 
1 2. J 1 • j 1-2'. J 1J 1J -

( n fn n fn )/ A~ l' fun, . > 0 U,+l ' , ,- U, 1 ' , 1 ' I.:V'>o 
1 2' J 1, J 1-2 , J 1- I J 1J 
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8P/az for a cell adjacent to a boundary are obtained by using quadratic extrap­

olation to obtain the pressure at the bOl~ndary and then using central differ­

ences to calculate gradients. The pressure at the open end of the tube is 

calculated explicitly and iterated upon. 

This explicit finite difference method for solution of the compressible 

flow equatiohs is a conditionally stable technique. A restriction is imposed 

on the size of the time step ~t to insure numerical stability. The criterion 

for this method was found by numerical experimentation since a rigorous 

stability analysis for such complex equations is beyond the state of the art. 

The most restrictive time step was found to be given by the CFL condition, 

which expressed in the dimensionless variables, is 

~t < - ~ 
..J2'Y Th 

(A.21) 

where D. = min(D.r, ~z), and Th is the largest temperature in the grid network . 

This represents basically the time required for a pressure wave to move the 

distance of one cell width. In real time this corresponds to time steps of the 
-4 

order of 10 seconds. For problems requiring several seconds of simula-

tion, this is not severely restrictive for third generation computer systems. 

A time-scaling procedure is used to reduce the computer run time for prob­

lems requiring long simulation times such as obtainip.g steady state solutions. 

A scaling procedure developed in Ref. A-S has been incorporated into 

the present numerical algorithm to lessen the time step requirement. This 

procedure is now briefly outlined including its applicability to present 

problems. The basic problem arises because diffusion processes occur on 

a time scale much larger than that of acoustic wave motion. The purpose 

of scaling is to speed up certain of the physical processes occurring in the 

fluid without disturbing the thermodynamic state of the fluid itself. The 

following procedure is based on familiar similarity laws of fluid mechanics. 

The dimensionless groups which apply to the present problem are (next page): 
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Reynolds number, Re 

Prandtl number, Pr = p. C /k 
P 

Nusselt number, Nu = q L/(kAT) 

Mach number, M =.:!.... c 
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(A.22) 

The objective is to increase the real time/computer time ratio by a factor of 

s such that each time step At that is us ed for computation will correspond to 

a real time sAt. To achieve this objective, 'we define a flow situation, which 

is similar, but not perfectly equivalent, to our original problem, by the follow­

ing transformations: 

t' = st' s 
p.' = s p.' s 

k' = sk' s (A.23) 

q' = sq' s 

v' = sv' s 

where the s subscript indicates a flow variable in a new time frame. We 

then have the thermal conductivity, viscosity, heat input and flow velocity 

increased by a factor of s. The new time frame t in which we com.pute will 
s 

now correspond to real time, st. The thermodynamic state of the fluid, tem-

perature, pressure and density, remain unchanged in the new time system. 

We must now note that each of the dimensionless groups except Mach number 

are the same in both time frames. We have increased the Mach number by a 

factor of s since the properties of the fluid which determine the sonic velocity 

have been preserved. Since the sonic velocity is unchanged, the size of the 

permis sible computation time step At is unchanged, but the real time At is s 
increased. This satisfies the original objective. 
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The use of the conservation form of the governing equations is essen­

tial to the finite difference procedure employed here. The algorithm can be 

summarized as follows: 

• Given conditions at each grid point in time n, the pu 
and pv products are advanced to time n+l from the 
momentum equations. 

• The pu, pv products at time n+l are used in the continuity 
equation to obtain the density p at time n+1. 

• The temperature, T, at n+l is now calculated from the 
energy equation using the just computed pn+l. 

• The pressure, P, at time n+l is evaluated explicitly from 
the ideal gas law. 

• The process is repeated until t =t or until a steady 
state is reached. max 

A.4 COMPUTER PROGRAM DESCRIPTION 

The numerical technique just described was implemented on a digital 

computer. The program is coded entirely in standard FORTRAN V language. 

The program has been set-up to run on the Univac 1108 system at NASA-MSFC, 

but it should execute on any machine having a FORTRAN V compiler, at least 

25K of core memory and one tape drive. Limited versions have been executed 

on the IBM 7094 and EAI 8400. 

The program is organized in modular form. A driver program calls 

a series of subroutines which performs the calculations. Three blocks con­

stitute the main components: input block, compute block, and output block. 

A diagram of the basic program organization is given as Fig. A-5. Coding 

of the neces sary logic utiliz es three "loops" through the program. The 

outermost loop provides the capability to execute multiple cases in a single 

run stream. This is used to calculate parametric solutions such as varying 

the LID or T hiT c' etc. The next loop marches the solution forward in time 

until a steady state condition is reached. The inner loop is an iteration to 

converge on the open end boundary value for the OScillating pressure. 
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Fig. A-5 - Block Diagram for Thermal Acoustic Oscillations Computer Program (TAO) 
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A detailed input guide and program listing are not included in this 

report. The complexity of the TAO problem itself requires an experienced 

user to properly analyze a configuration. The complexity of finite-difference 

solutions of the Navier-Stokes equation requires also a special skill. Proper 

selection of grid size and time-step size is essential for stability of the 

numerical method. These remarks are made to caution the reader who may 

get the impression that this computer program will solve all TAO problems 

by simply inputting punched cards. 

The input required is shown in the first block of Fig. A-S. The output 

consists of printed page format, contour maps and time plots of the flow field. 

Figure A-6 is a typical output of the pressure oscillations in a closed tube 

configuration. Figur~}- A-7 is a plot of the temperature oscillations near the 

open end of the tube with LID = 100. The plots are produced automatically 

uSing the SC 4020 routines. 

The TAO program produces an output tape containing the entire flow 

field. This tape is used for restarting a case and for input to the General 

Statistical Analysis (GSA) program. 

A.S GENERAL STATISTICAL ANALYSIS PROGRAM (GSA) 

One of the main objectives of this study is to determine the frequency 

characteristics of thermal acoustic oscillations. These could be obtained 

approximately from the plotted output of the TAO program. However, a 

more precise approach was taken in this study. A computer program was 

developed at Lockheed-Huntsville in connection with meteorological studies. 

This program performs a general statistical analysis of time varying data. 

The program, termed GSA in this work, is documented in Ref. A-6. A brief 

description of this program is presented here to illustrate the applicability 

to the TAO problem and tq show the method used to obtain the frequency 

data which are presented. 
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We start with a titne series x(t) having oscillatory properties and being 

valid a sufficiently long period 0 ~ t ~ T. The series x(t) may represent the 

calculated pressure, tetnperature, density or velocity solutions of the thertnal 

acoustic oscillations cotnputer program. The statistical paratneters of x(t), 
- 2 2 natnely, the tnean value x, the variance (J , the tnean square value l!J , and x x 

the standard deviation (J , are defined as follows: x 

T 

x = liT f x(t) dt 

o T 
(J2 = liT f [x(t) - xl 2 dt x 

o T (A.24) 

l!J2 = liT f x 2 (t) dt 
x 

0 

(J = fa! x 

The tnean value is simply the cwerage of all values within the time interval 

of 0 < t < T. The variance is the tnean square value about the mean. The 

variance is a dynamic or fluctuating component of the time series. It is a 

tneasure of the degree of fluctuation. The mean square value represents the 

general intensity of the time series. It is the average of the squared value 

of the time history. The standard deviation is simply defined as the positive 

root of the variance. 

By expanding Eq. (A-24), it can be shown that the variance i.s equal to 

the tnean square value tninus the square of the mean value. That is, 

2 
(J 

x 
= ~2 

x 
(A.ZS) -2 

-x 

The auto-correlation function of an oscillatory time series x(t) de­

scribes the general dependence of the values of x at one titne or the value 

at another titne. An estimate for the auto-correlation between the values 

of x(t) at titnes t and t+T may be obtained by taking the product of the two 
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values and averaging over the observation time t. The observation time t 

is supposed to be sufficiently large to cover many times the periods of the 

waves contained in x(t). In equation form, the auto-correlation function, 

R (T), is defined as x 
T 

Rx(T) = if x(t) x(t+r) dt 

o 
(A.26 ) 

The quantity R (r) is always a real-valued even function with a maximum at 
x 

T :: 0, and may be either positive or negative. In terms of the auto-correlation 

function, the mean value of x(t) is given by 

In words, the mean value of x(t) is equal to the positive square root of the 

auto-correlation as the time displacement becomes very long. Similarly, 

the mean square value of x(t) is given by 

lJJ2 = R (0) x x 

(A.27) 

(A.28) 

That is, the mean square value is equal to the auto-correlation at zero time 

displac ement. 

The power spectral density function (also called the auto-spectral 

density function) of x(t) describes the general frequency composition of x(t) 

in terms of the spectral density of its mean square value. The mean square 

values of the time series x(t) in a frequency range between f and f + ~f, i.e., 

x(t; f, ~f), may be obtained by filtering the series with a band-·pass filter 

having sharp cutoff characteristics, and computing the average of the squared 

output from the filter. This average squared value will approach an exact 

mean square value as the observation time, t, becomes large. That is, for 

sufficiently large t, 

T 

lJJ; (f, ~f) = i J x
2 

(t, f, ~f) dt 

o 

A-22 
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where l/J2 (f,~f) is the mean square value of x in the frequency range from 
x 

f to f + Af. 

The power spectral density fur),ction of x(t) is defined as 

2 
l ' l/J (f, Af) 1m x = Af ~ 0 ~~A~f--G (f) x 

l 

(A.30) 

Hence, the power spectral density of x(t) at the frequency f, 

the mean square value of x(t) at f per unit frequency. 

i.e ., G (f), is x 

An important property of the power spectral density function lies in 

its relationship to the auto-correlation function, R (t). For a set of stationary 
x 

oscillatory data, the two set statistical functions G (f) and R (t) are related x x 
by a Fourier transform as follows 

00 

G (f) = 2/ 
R (t) e -j21r ft 

x x 
-00 

00 

= 41 R (t) cos21r ft dt 
x 

0 

where j =~. 

Other statistical properties of x(t), such as mean value and square 

value, are also related to Gx(f). 

(A.3l) 

This type of approach provides an excellent analysis for the TAO data. 

Consider a time series as shown in Fig.A-8 (top). This is typical of the 
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Fig. A-8 - Example of Power Spectral Density for Multiple Frequency Content 
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pressure wave data i.n a tube. The power spectral density is shown at the 

bottom of Fig. A-B. The lower frequency fl has a larger energy content 

than the higher frequency f
2

• The calculated TAO waves exhibit this type 

of character. 

Figure A-9 is a summary flow chart of the GSA program. It shows 

the basic logic of the program and the statistical functions which are 

computed. The inputs x, y can be any functions of time such as temperatur e 

and pressure. These are supplied via magnetic tape from the TAO solutions. 

The program then calculates mean values, mean squared values, standard 

deviations and variances. The data are then detrended and tapered to give 

zero mean value and slope. The Fourier transform of the complex function 

z = x + jy is now computed using a Fast Fourier Transform (FFT) algo;rithtn. 

The first calculations are then made for a number of statistical functions as 

shewn on the second column of Fig. A-9. 
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A.7 APPENDIX A NOMENCLA TURE 

Thermal Acoustic Oscillations 

Symbol 

D 

.... 
F 

f 

i 

j 

k 

K 

L 

m 

M 

n 

Nu 

P 

Pr 

q 

Re 

r 

De sc ription 

specific heat at constant pressure 

specific heat at constant volume 
I 

diameter of tube 

body force vector 

any flow variable 

node point "i" on finite-difference grid 

node point "j" on finite -difference grid 

thermal conductivity 

coefficient of isothermal compressibility 

length of tube 

molecular weight of gas 

Mach number 

time point "n" in finite-difference grid 

Nusselt number 

pressure 

Prandtl number 

total heat flux 

radiation heat flux vector 

internal heat generation rate 

universal gas constant 

acoustic Reynolds number 

radial coordinate 
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Description 

time scale factor 

time 

temperature 

velocity component in r-direction 

velocity component in z -direction 

velocity vector 

axial coordinate 

coefficient of thermal expansion 

ratio of specific heats (C /C ) p v 

ZL/D (aspect ratio) 

"second" or bulk coefficient of viscosity 

dynamic viscosity 

perturbation frequency 

density 

viscous dissipation fundion 

initial condition or reference value 

cold condition 

hot condition 

wall condition 

gas 

space coordinate designation in finite difference 
grid 

mean value 

going out of tube 
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Symbol 

in 

T 

Superscripts 

n 

Operators 

8/8t 

8/8z, 8/8r 

D/Dt 

v 

v 

x 

Statistical Analysis 

x(t), y(t) 

x, Y 
2 2 

~x' ~y 
a ,a 

x y 

2 2 a , a 
x y 

z. 
1 

LMSC -HREC TR D390690-II 

Description 

coming into tube 

tube 

time coordinate designation in finite-different:e 
grid 

indicates dimensional quantities 

time partial derivative 

space partial derivative 

substantial derivative: a/at + (V· V) 

dot p1~oduct of vectors 

gradient operator 

divergence operator 

cross product of vectors 

arbitrary functions of time 

discrete values of x(t), y(t) 

mean values 

,mean square values 

standard deviations 

statistical variance 

complex function x. + jy. 
1 1 

Fourier transform of z 

complex conjugate of Zk 
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I f. 

Gx·Gy 

[ fb x ' fb y 

T 

[ RJt 

f 
,.,~ 

UH ,.1, 
Af .jj/ 
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Description 

power spectral density function 

phase angle 

period of oscillations 

auto-correlation function 

frequency of oscillation 

incremental frequency 
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