72 research outputs found

    Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

    Get PDF
    Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity) effect), a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community

    Neo-Atlantis: The Netherlands under a 5-m sea level rise

    Get PDF
    What could happen to the Netherlands if, in 2030, the sea level starts to rise and eventually, after 100 years, a sea level of 5 m above current level would be reached? This question is addressed by studying literature, by interviewing experts in widely differing fields, and by holding an expert workshop on this question. Although most experts believe that geomorphology and current engineering skills would enable the country to largely maintain its territorial integrity, there are reasons to assume that this is not likely to happen. Social processes that precede important political decisions - such as the growth of the belief in the reality of sea level rise and the framing of such decisions in a proper political context (policy window) - evolve slowly. A flood disaster would speed up the decision-making process. The shared opinion of the experts surveyed is that eventually part of the Netherlands would be abandoned. © 2008 The Author(s)
    • …
    corecore