54 research outputs found

    Cosmic Ray Diffusion from the Galactic Spiral Arms, Iron Meteorites, and a possible climatic connection?

    Get PDF
    We construct a Galactic cosmic ray (CR) diffusion model while considering that CR sources reside predominantly in the Galactic spiral arms. We find that the CR flux (CRF) reaching the solar system should periodically increase each crossing of a Galactic spiral arm. We search for this signal in the CR exposure age record of Iron meteorites and confirm this prediction. We then check the hypothesis that climate, and in particular the temperature, is affected by the CRF to the extent that glaciations can be induced or completely hindered by possible climatic variations. We find that although the geological evidence for the occurrence of IAEs in the past Eon is not unequivocal, it appears to have a nontrivial correlation with the spiral arm crossings--agreeing in period and phase. Thus, a better timing study of glaciations could either confirm this result as an explanation to the occurrence of IAEs or refute a CRF climatic connection.Comment: 4 Journal pages, 2 figures, revtex4. Appearing today in Phys Rev Let

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Радиографический метод контроля сварных швов трубопроводов

    Get PDF
    Обнаружение дефектов сварных соединений является одной из основных задач неразрушающего контроля, применяемого для диагностики технического состояния трубопроводов различного назначения. Среди методов неразрушающего контроля широкое распространение получил радиографический метод. Для обработки изображений, полученных радиографическим методом, и обнаружения дефектов сварки, используются различные алгоритмы. Одним из перспективных алгоритмов обработки изображений является алгоритм, основанный на методе нейронной сети.Detection of defects in welded joints is one of the main tasks of non-destructive testing used for diagnostics of the technical condition of pipelines for various purposes. Among the methods of nondestructive testing, the radiographic method is widely used. For processing images obtained by radiographic method, and the detection of welding defects, various algorithms are used. One of the promising algorithms for image processing is an algorithm based on the neural network method

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Isotopic constraints on the origin of ultramafic and mafic dikes in the Balmuccia peridotite (Ivrea Zone).

    No full text
    The Balmuccia peridotite massif in the central Ivrea Zone constitutes an upper mantle slice which has been tectonically emplaced into the crust. It represents the residue from partial melting of undepleted mantle material and varies in composition from lherzolite to harzburgite and subordinate dunite. Dikes of websterite and gabbroic pods within the peridotite can be subdivided into an older Cr-diopside suite and a younger Al-augite suite. Nd isotopic data on whole rocks of these lithotypes in combination with independent observations suggest that the dikes formed during a Hercynian event about 270 Ma ago. The rocks of the Cr-diopside dikes, in particular, display isotopic signatures similar to those of the lherzolite and represent fractionates from partial melts derived from the lherzolite wall rock. The Sm - Nd data of the pyroxenites and gabbros of the Al-augite suite, in contrast, scatter widely and suggest that partial melting of lherzolite was triggered or at least accompanied by introduction of fluids and/or liquid phases. These fluids or liquids carried exotic isotopic components from elsewhere in the crust-mantle complex, and deposited them within the rocks by metasomatic reactions. Two distinct types of metasomatism must have operated not only within the Balmuccia body, but also in the complex of Finero: The first type of metasomatism introduced mantle-derived volatiles and is responsible for formation of amphibole. The other type has a crustal source and led to formation of phlogopite, which occurs mainly within mantle rock of Finero, but occasionally, within the Balmuccia body also
    corecore