59 research outputs found
EBV-gp350 Confers B-Cell Tropism to Tailored Exosomes and Is a Neo-Antigen in Normal and Malignant B Cells—A New Option for the Treatment of B-CLL
gp350, the major envelope protein of Epstein-Barr-Virus, confers B-cell tropism to the virus by interacting with the B lineage marker CD21. Here we utilize gp350 to generate tailored exosomes with an identical tropism. These exosomes can be used for the targeted co-transfer of functional proteins to normal and malignant human B cells. We demonstrate here the co-transfer of functional CD154 protein on tailored gp350+ exosomes to malignant B blasts from patients with B chronic lymphocytic leukemia (B-CLL), rendering B blasts immunogenic to tumor-reactive autologous T cells. Intriguingly, engulfment of gp350+ exosomes by B-CLL cells and presentation of gp350-derived peptides also re-stimulated EBV-specific T cells and redirected the strong antiviral cellular immune response in patients to leukemic B cells. In essence, we show that gp350 alone confers B-cell tropism to exosomes and that these exosomes can be further engineered to simultaneously trigger virus- and tumor-specific immune responses. The simultaneous exploitation of gp350 as a tropism molecule for tailored exosomes and as a neo-antigen in malignant B cells provides a novel attractive strategy for immunotherapy of B-CLL and other B-cell malignancies
Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo
Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells
Hypoxic enhancement of exosome release by breast cancer cells
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedBackground
Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling.
Methods
Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant.
Results
Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions.
Conclusions
These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.HK was recipient of a Flinders University Unibooks Honours Scholarship and the work was funded by the Flinders Medical Centre Research Foundation, the Lyn Wrigley Breast Cancer Research and Development Fund, and the Flinders Medical Centre Clinicians Special Purpose Fund
Impact of nanoparticles on dendritic cells.
Dendritic cells (DCs) are pivotal in the initiation of the adaptive immune response. DCs undergo maturation, a process central to their functioning, where immature DCs ingest protein antigens and mature DCs present peptides to naive T cells. Various types of nanoparticles (NPs) can influence the process of DC maturation and by that the immune response. Chemical composition, size, and surface modification have been shown to affect DC maturation; chemical composition and size effects on the direction (Th1/Th2/Th17) of the immune response have been observed. Further studies studying series of NP are required to further delineate the particle characteristics that determine these effects
- …