141 research outputs found

    Addressing the Requirements of High‐Sensitivity Single‐Molecule Imaging of Low‐Copy‐Number Proteins in Bacteria

    Full text link
    Single‐molecule fluorescence super‐resolution imaging and tracking provide nanometer‐scale information about subcellular protein positions and dynamics. These single‐molecule imaging experiments can be very powerful, but they are best suited to high‐copy number proteins where many measurements can be made sequentially in each cell. We describe artifacts associated with the challenge of imaging a protein expressed in only a few copies per cell. We image live Bacillus subtilis in a fluorescence microscope, and demonstrate that under standard single‐molecule imaging conditions, unlabeled B. subtilis cells display punctate red fluorescent spots indistinguishable from the few PAmCherry fluorescent protein single molecules under investigation. All Bacillus species investigated were strongly affected by this artifact, whereas we did not find a significant number of these background sources in two other species we investigated, Enterococcus faecalis and Escherichia coli. With single‐molecule resolution, we characterize the number, spatial distribution, and intensities of these impurity spots.Bright spots: A single‐molecule‐like fluorescent background signal is reported in Bacillus subtilis cells, and the density and fluorescence intensity of these spots are quantified in several Bacillus species and other Gram‐negative and Gram‐positive organisms.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144710/1/cphc201600035_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144710/2/cphc201600035.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144710/3/cphc201600035-sup-0001-misc_information.pd

    Magnetic field dependence of superconducting energy gaps in YNi2B2C: Evidence of multiband superconductivity

    Full text link
    We present results of in field directional point contact spectroscopy (DPCS) study in the quaternary borocarbide superconductor YNi2B2C, which is characterized by a highly anisotropic superconducting gap function. For I||a, the superconducting energy gap (D), decreases linearly with magnetic field and vanishes around 3.25T which is well below the upper critical field (Hc2~6T) measured at the same temperature (2.2K). For I||c, on the other hand, D decreases weakly with magnetic field but the broadening parameter (G) increases rapidly with magnetic field with the absence of any resolvable feature above 3.5T. From an analysis of the field variation of energy gaps and the zero bias density of states we show that the unconventional gap function observed in this material could originate from multiband superconductivity.Comment: 19 pages including figures (final version

    Evidence for the Coexistence of Anisotropic Superconducting Gap and Nonlocal Effects in the Non-magnetic Superconductor LuNi2B2C

    Get PDF
    A study of the dependence of the heat capacity Cp(alpha) on field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, Cp(alpha) exhibits a fourfold variation as the field H < Hc2 is rotated in the [001] plane, with minima along (alpha = 0). A slightly disordered sample, however, develops anomalous secondary minima along for H > 1 T, leading to an 8-fold pattern. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and non-local effects.Comment: 5 pages, 4 figure

    The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters

    Get PDF
    Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater–marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial contamination event occurred. Further work, however, is still required to understand and predict the potential human infectivity of pathogenic organisms alongside the better design of early warning systems and surveillance measures for risk assessment purposes
    corecore