9 research outputs found

    Frequency of Chlamydia trachomatis in Ureaplasma-positive healthy women attending their first prenatal visit in a community hospital in Sapporo, Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although <it>Chlamydia trachomatis </it>is the most commonly reported pathogen that causes urogenital infection such as urethritis or cervicitis, <it>Ureaplasma parvum </it>and <it>Ureaplasma urealyticum</it>, which are commensals in the genital tract, have also now been recognized as contributors to urogenital infection. However, whether the presence of either <it>U. parvum </it>or <it>U. urealyticum </it>is related to that of <it>C. trachomatis </it>in the urogenital tract remains unknown. We therefore attempted to estimate by PCR the prevalence of <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum </it>in endocervical samples obtained from healthy women attending their first prenatal visit in Sapporo, Japan.</p> <p>Methods</p> <p>The samples were taken from 303 apparently healthy women, and the extracted DNAs (<it>n </it>= 280) were used for PCR detection targeting <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum</it>. Statistical analysis of the data was performed by Fisher's exact test.</p> <p>Results</p> <p>PCR detection revealed that the prevalence of <it>C. trachomatis, U. parvum </it>and <it>U. urealyticum </it>was 14.3% (40/280), 41.7% (117/280) and 8.9% (25/280), respectively. <it>C. trachomatis ompA </it>genotype D was most frequently identified. Surprisingly, either <it>C. trachomatis </it>or <it>Ureaplasma </it>spp. was detected in almost half of the healthy women. Mixed infection of <it>C. trachomatis </it>with either <it>U. parvum </it>or <it>U. urealyticum </it>was also observed in 9.2% (26/280) of the women. There was a significant association between <it>C. trachomatis </it>and either <it>U. parvum </it>(<it>p </it>= 0.023) or <it>Ureaplasma </it>total (<it>p </it>= 0.013), but not <it>U. urealyticum </it>(<it>p </it>= 0.275).</p> <p>Conclusion</p> <p>This study demonstrated that the presence of <it>Ureaplasma </it>had a significant effect on the presence of <it>C. trachomatis </it>in the genital tract of healthy women, suggesting that mixed infection is an important factor in bacterial pathogenesis in the genital tract.</p

    Mycoplasma genitalium: An Emerging Cause of Sexually Transmitted Disease in Women

    Get PDF
    Mycoplasma genitalium is an emerging sexually transmitted pathogen implicated in urethritis in men and several inflammatory reproductive tract syndromes in women including cervicitis, pelvic inflammatory disease (PID), and infertility. This comprehensive review critically examines epidemiologic studies of M. genitalium infections in women with the goal of assessing the associations with reproductive tract disease and enhancing awareness of this emerging pathogen. Over 27,000 women from 48 published reports have been screened for M. genitalium urogenital infection in high- or low-risk populations worldwide with an overall prevalence of 7.3% and 2.0%, respectively. M. genitalium was present in the general population at rates between those of Chlamydia trachomatis and Neisseria gonorrhoeae. Considering more than 20 studies of lower tract inflammation, M. genitalium has been positively associated with urethritis, vaginal discharge, and microscopic signs of cervicitis and/or mucopurulent cervical discharge in seven of 14 studies. A consistent case definition of cervicitis is lacking and will be required for comprehensive understanding of these associations. Importantly, evidence for M. genitalium PID and infertility are quite convincing and indicate that a significant proportion of upper tract inflammation may be attributed to this elusive pathogen. Collectively, M. genitalium is highly prevalent in high- and low-risk populations, and should be considered an etiologic agent of select reproductive tract disease syndromes in women

    Proximity effects correction for sub-10nm patterning node

    No full text
    In this communication, we report on our experimental results from the research focused on the application of the electron beam direct writing in the nanometer range. Special care is taken to analyze the forward scattering spread and its influence on the pattering fidelity for patterns with the dimensions in the sub-10nm region. We model, simulate and discuss several different cases of the strategy used in the pattern writing. The sub-pixel address grid is used and the energy beam distribution is analyzed with 1 angstrom resolution. The pre-compensated energy distribution is analyzed from its slope cross-sectional point of view. Additionally, the field factor correction (FFC) dose compensation, the correctness of the built-in FFC compensation for the sub-10nm regime, and its influence on the writing speed is discussed. We map the pre-compensated energy distribution used for the pattern exposure to the developed resist profile modeled by the spline approximation of the experimentally acquired resist contrast curve. The newly established development process for the hydrogen silsesquioxane (HSQ) resist has been tested and applied in its optimal way. Successful sub-10nm patterning with the dimension controllability better than 5% of the critical dimension (CD) was achieved. The experimental setup use JBX-9300FS (used @ 100keV) as the exposure tool, and the HSQ (XR-1541) as the resist. The energy intensity distribution (EID) function used for the proximity effects compensation is calculated by CHARIOT simulation engine

    Proximity effect correction for 20nm dimension patterning

    No full text
    Electron Beam Direct Writing (EBDW) has been applied to various applications such as prototyping or small amount production of electronic devices. Originally, proximity effect in EBDW is considered as the problem of the background energy difference caused by the pattern density distribution. However, the critical dimensions of target patterns are getting smaller, we cannot ignore influences of the forward scattering. Theoretically, when the critical dimension is close to 3 or 4 times of forward scattering range, influence cannot be ignored. For example, in case ofthat corresponds, fabricating 20 nm dimension patterns by Nano Imprint Lithography (NIL) which is significant candidate of next generation lithography technology. Because it requires original dimension (1:1) mold. Therefore proximity effect correction (PEC) system which considers the forward scattering must be important. We developed simulation-based proximity effect correction system combined with data format conversion, works on Linux PC cluster. And we exposed the patterns which are dose compensated by this system. Firstly, we have speculated parameters about backward scattering parameters by exposing 100 nm line and space patterns. We got following parameters, beta (backward scattering range) = 32 urn, eta (backward scattering coefficient) = 2.5. Secondary, we have exposed Line and Space patterns whose dimensions are from 20 nm to 100 nm. We found that smaller and dense patterns have trend to be over exposed and bigger. Experimental specification is following, EB Direct Writing system is JBX-9300FS (lOOkeV ace. Voltage) by JEOL co.ltd, (Japan) , resist is HSQ (FOx 12) by Dow Coming co. (United States), substrate is Si
    corecore