3,114 research outputs found

    Origin of superconducting carriers in "non-doped" T'- (La,RE)2CuO4 (RE = Sm, Eu, Gd, Tb, Lu, and Y) prepared by molecular beam epitaxy

    Full text link
    We have performed a systematic investigation of the variations of the lattice constants with substituent rare-earth element concentration x in the nominally undoped superconductors T'-(La3+)2-x(RE3+)xCuO4 (RE = Sm, Eu, Gd, Tb, Lu, and Y), which we have recently discovered using MBE. The results show both the in-plane and out-of-plane lattice constants (a0 and c0) linearly decrease with x, whose extrapolation to x = 2 agrees well with the reported a0 and c0 values for each T'-RE2CuO4. This behavior is what one would expect simply from the ionic size difference between La3+ and RE3+. The absence of the Cu-O bond stretching due to electron-doping, which is commonly observed in electron-doped T' and infinite-layer superconductors, implies that electron doping via oxygen deficiencies is, at least, not a main source of charge carriers.Comment: proceedings of ISS 200

    Phase control of La2CuO4 in thin-film synthesis

    Full text link
    The lanthanum copper oxide, La2CuO4, which is an end member of the prototype high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the "K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry, however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures. In this article we demonstrate that low-temperature thin-film synthesis actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte

    Generic phase diagram of "electron-doped" T' cuprates

    Full text link
    We investigated the generic phase diagram of the electron doped superconductor, Nd2-xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap "impurities" on superconductivity and also magnetism in T' cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2-xCexCuO4.Comment: 12 pages, 4 figures; International Symposium on Superconductivity (ISS) 200

    Multiscale expansion of the lattice potential KdV equation on functions of infinite slow-varyness order

    Full text link
    We present a discrete multiscale expansion of the lattice potential Korteweg-de Vries (lpKdV) equation on functions of infinite order of slow-varyness. To do so we introduce a formal expansion of the shift operator on many lattices holding at all orders. The lowest secularity condition from the expansion of the lpKdV equation gives a nonlinear lattice equation, depending on shifts of all orders, of the form of the nonlinear Schr\"odinger (NLS) equationComment: 9 pages, submitted to Journ. Phys.

    Charge transfer gap for T'-RE2CuO4 and T-La2CuO4 as estimated from Madelung potential calculations

    Full text link
    T'-RE2CuO4 (RE: rare-earth element), after appropriate "reduction", has fairly high conductivity and also exhibits clear Fermi edge in photoemission spectroscopy. To clarify the origin of conductivity in the T' mother compounds, we evaluated the unscreened charge-transfer gap for T'-RE2CuO4 and T-La2CuO4. The value of charge-transfer gap for T'-compounds almost linearly decreases with increasing the ionic radius of RE from 12.24 eV for T'-Tm2CuO4 to 9.90 eV for T'-La2CuO4. The results qualitatively explain metallic conductivity in T'-RE2CuO4 for large RE.Comment: 12 pages, 1 figure, Proceedings of ISS 200

    Ce doping in T-La2CuO4 films: Broken electron-hole symmetry for high-Tc superconductivity

    Full text link
    We attempted Ce doping in La2CuO4 with the K2NiF4 (T) structure by molecular beam epitaxy. At low growth temperature and with an appropriate substrate choice, we found that Ce can be incorporated into the K2NiF4 lattice up to x ~ 0.06, which had not yet been realized in bulk synthesis. The doping of Ce makes T-La2-xCexCuO4 more insulating, which is in sharp contrast to Ce doping in La2CuO4 with the Nd2CuO4 structure, which makes the compounds superconducting. The observed smooth increase in resistivity from hole-doped side (T-La2-xSrxCuO4) to electron-doped side (T-La2-xCexCuO4) indicates that electron-hole symmetry is broken in the T-phase materials.Comment: proceedings of ISS 200
    corecore