109 research outputs found

    Thermodynamics of a two-dimensional Yukawa fluid

    Get PDF
    Thermodynamic quantities of a two-dimensional Yukawa system, a model for various systems including single-layered dust particles observed in dusty plasmas, are obtained and expressed by simple interpolation formulas. In the domain of weak coupling, the analytical method based on the cluster expansion is applied and, in the domain of intermediate and strong coupling, numerical simulations are performed. Due to reduced dimensionality, the treatment based on the mean field fails at the short range and exact behavior of the binary correlation is to be taken into account even in the case of weak coupling.</p

    Nonlinear Evolution of the Genus Statistics with Zel'dovich Approximation

    Full text link
    Evolution of genus density is calculated from Gaussian initial conditions using Zel'dovich approximation. A new approach is introduced which formulates the desired quantity in a rotationally invariant manner. It is shown that normalized genus density does not depend on the initial spectral shape but is a function of the fluctuation amplitude only.Comment: 21 pages, 6 Postscript figures, LaTe

    The Galaxy Distribution Function from the 2MASS Survey

    Full text link
    We determine the spatial distribution function of galaxies from a wide range of samples in the 2MASS survey. The results agree very well with the form of the distribution predicted by the theory of cosmological gravitational many-body galaxy clustering. On large scales we find a value of the clustering parameter b = 0.867 +/- 0.026, in agreement with b = 0.83 +/- 0.05 found previously for the Pisces-Perseus supercluster. We measure b(theta) as a function of scale, since this is a powerful test of the applicability of computer simulations. The results suggest that when galaxies clustered they were usually surrounded by individual, rather than by communal haloes.Comment: Astrophysical Journal, accepted: 14 pages with 23 embedded reduced resolution Postscript figures & 2 table

    Clustering of Lyman alpha emitters at z ~ 4.5

    Full text link
    We present the clustering properties of 151 Lyman alpha emitting galaxies at z ~ 4.5 selected from the Large Area Lyman Alpha (LALA) survey. Our catalog covers an area of 36' x 36' observed with five narrowband filters. We assume that the angular correlation function w(theta) is well represented by a power law A_w = Theta^(-beta) with slope beta = 0.8, and we find A_w = 6.73 +/- 1.80. We then calculate the correlation length r_0 of the real-space two-point correlation function xi(r) = (r/r_0)^(-1.8) from A_w through the Limber transformation, assuming a flat, Lambda-dominated universe. Neglecting contamination, we find r_0 = 3.20 +/- 0.42 Mpc/h. Taking into account a possible 28% contamination by randomly distributed sources, we find r_0 = 4.61 +/- 0.6 Mpc/h. We compare these results with the expectations for the clustering of dark matter halos at this redshift in a Cold Dark Matter model, and find that the measured clustering strength can be reproduced if these objects reside in halos with a minimum mass of 1-2 times 10^11 Solar masses/h. Our estimated correlation length implies a bias of b ~ 3.7, similar to that of Lyman-break galaxies (LBG) at z ~ 3.8-4.9. However, Lyman alpha emitters are a factor of ~ 2-16 rarer than LBGs with a similar bias value and implied host halo mass. Therefore, one plausible scenario seems to be that Lyman alpha emitters occupy host halos of roughly the same mass as LBGs, but shine with a relatively low duty cycle of 6-50%.Comment: 23 pages in preprint format, 4 figures, ApJ accepte

    Hierarchical clustering and formation of power-law correlation in 1-dimensional self-gravitating system

    Get PDF
    The process of formation of fractal structure in one-dimensional self-gravitating system is examined numerically. It is clarified that structures created in small spatial scale grow up to larger scale through clustering of clusters, and form power-law correlation.Comment: 9pages,4figure

    Phases in Strongly Coupled Electronic Bilayer Liquids

    Full text link
    The strongly correlated liquid state of a bilayer of charged particles has been studied via the HNC calculation of the two-body functions. We report the first time emergence of a series of structural phases, identified through the behavior of the two-body functions.Comment: 5 pages, RevTEX 3.0, 4 ps figures; Submitted to Phys. Rev. Let

    Primordial fractal density perturbations and structure formation in the Universe: 1-Dimensional collisionless sheet model

    Get PDF
    Two-point correlation function of galaxy distribution shows that the structure in the present Universe is scale-free up to a certain scale (at least several tens Mpc), which suggests that a fractal structure may exist. If small primordial density fluctuations have a fractal structure, the present fractal-like nonlinear structure below the horizon scale could be naturally explained. We analyze the time evolution of fractal density perturbations in Einstein-de Sitter universe, and study how the perturbation evolves and what kind of nonlinear structure will come out. We assume a one-dimensional collisionless sheet model with initial Cantor-type fractal perturbations. The nonlinear structure seems to approach some attractor with a unique fractal dimension, which is independent of the fractal dimensions of initial perturbations. A discrete self-similarity in the phase space is also found when the universal nonlinear fractal structure is reached.Comment: 17 pages, 19 jpeg figures. Accepted for publication in ApJ. Figures are also available from http://www.phys.waseda.ac.jp/gravity/~tatekawa/0003124/figs.tar.g

    The Correlation Function in Redshift Space: General Formula with Wide-angle Effects and Cosmological Distortions

    Get PDF
    A general formula for the correlation function in redshift space is derived in linear theory. The formula simultaneously includes wide-angle effects and cosmological distortions. The formula is applicable to any pair with arbitrary angle Ξ\theta between lines of sight, and arbitrary redshifts, z1z_1, z2z_2, which are not necessarily small. The effects of the spatial curvature both on geometry and on fluctuation spectrum are properly taken into account, and thus our formula holds in a Friedman-Lema\^{\i}tre universe with arbitrary cosmological parameters Ω0\Omega_0 and λ0\lambda_0. We illustrate the pattern of the resulting correlation function with several models, and also show that validity region of the conventional distant observer approximation is Ξ≀10∘\theta \le 10^\circ.Comment: 45 pages including 9 figures, To Appear in Astrophys. J. 535 (2000
    • 

    corecore