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Thermodynamics of a two-dimensional Yukawa fluid
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Thermodynamic quantities of a two-dimensional Yukawa system, a model for various systems including
single-layered dust particles observed in dusty plasmas, are obtained and expressed by simple interpolation
formulas. In the domain of weak coupling, the analytical method based on the cluster expansion is applied and,
in the domain of intermediate and strong coupling, numerical simulations are performed. Due to reduced
dimensionality, the treatment based on the mean field fails at the short range and exact behavior of the binary
correlation is to be taken into account even in the case of weak coupling.

DOI: 10.1103/PhysRevE.70.016405 PACS nunier52.27.Lw, 52.27.Jt, 05.70.Ce

I. INTRODUCTION As well as two-dimensional dust crystals in the domain of

) ) ] _strong coupling, the two-dimensional Yukawa system in the

The two-dimensional Yukawa system has been investiyeak coupling domain is also interesting. It has been known
gated as a typical example and model system in two dimenya¢ (6,7], in the domain of weak coupling, thermodynamic

sions which covers systems with both the long- and shortyyanities of a two-dimensional system of charges have dit-

ranged interactions by adjusting a single parameter. On thgent pehavior from that of a three-dimensional one due to

other hand, the formation of horizontal layers composed ofeqyced dimensionality. In three dimensions, the mean field

dust particles has been observed in recent dusty plasma &feory (the random phase approximatjoworks in the do-

periments and it has been shown that the number of layers i85in of weak coupling, correctly describing the major many-
determined by the competition between mutual repulsion a”ﬁody effect, the screening of the long-range interaction. In

strength of vertical confinemefit]. When the latter is strong 14" dimensions, however, the consideration of the short-
enough, we have the single-layered state as the ground stgighge(two-body) correlation is needed with the same weight

of the layered system. Those dust particles can be regarded e |ong-range screening even in the domain of weak cou-
as interacting via the Yukawa potential and we have a wop|ing The leading terms in thermodynamic quantities of the

dimensional Yukawa system in reality. They have providedyyo_dimensional Coulomb system have been obtained by
us with a unique example of a two-dimensional finite systemyne of the authors by properly taking the short-range corre-

whose microscopic characteristics can be easily observed B¥iion into accoun{6,7]. We here extend those results to a
charge coupled device cameras and even by the naked ey&;5_dimensional Yukawa system.

Both static and dynamic properties have been investigated \we consider the system of particles with the surface

including distribution functions, dynamic fluctuation SpeCtra’densityn and the temperaturg interacting via the Yukawa
and dispersion relations of various modes of oscillati#js otential

The results are of much interest by themselves and also help
us to estimate physical parameters of ambient plasmas in
experimentg3-5|.

In this paper, we give the thermodynamic quantities of a ) ) )
two-dimensional Yukawa system. Thermodynamic quantitiedvheree is the charge on a particle amds the mutual dis-
are of fundamental importance and play an essential role, fd@&nce. We assume the existence of the inert uniform back-
example, to determine the equilibrium of a system in exterdround charge of densityne which neutralizes the charge
nal potential. We employ both analytical methods based of€nsity of particles. This system is characterized by the pa-
the cluster expansion and numerical simulations. In prinfameters’” and £ given, respectively, by
ciple, we are able to obtain these quantities by numerical o2

v(r) = eTZ exp(—r/N), (1.1

simulations. In the domain of weak coupling, however, ther- I's—— (1.2
mal fluctuations usually make it difficult to obtain accurate kgTa
values in simulations and analyses based on the expansignd
with respect to the coupling parameter becomes useful.
Yukawa systems in dusty plasmas are often in the state of = a (1.3
strong coupling due to large charge on dust particles and N’
both two- and three-dimensional lattices have been observed, . . ,
wherea is the mean distance defined by
* . ) . . a= ;1/2 (1.9
Email address: totsuji@elec.okayama-u.ac.jp (7rn)
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Il. WEAK COUPLING 22
o v(kK) = T (2.9
We here assume that the coupling is weak or (k= +1/\%)
<1 2.1 Following the standard proceduf@&,9], we obtain the con-

ductivity o(k , w) and the dielectric response functietk , w)
As is shown shortly below, the many body screening effect isn the random phase approximation as
characterized by the two-dimensional Debye wave number e m 172
Kp defined by kK w)= =Y 9(—) 2.10
a(k, o) T : (2.10

k\kgT

_271'I’1e2
P77 eT

(2.2

K m 1/2
s(k,w):1+k2—721/2W{E(k—> } (2.11
Another definition of the coupling parameter which we de- (k*+ 1A% Bl

note bye is the ratio between the Landau lengfliksT and  Herem is the massKj, is the Debye wave number given by
the Debye length K, and is related td” as below and is  Eq. (2.2), andW(2) is defined by

also small: )
1 (7 xexp—x72)
W(z) = f X —. (2.12
g:ez—iﬂzzr% 1. (2.3 em*?)_."" x-z-i0
D
. ) From the fluctuation-dissipation theorem,9], the static
In the Coulombic casé\ — ), the pressuré® is calcu- o factorS(k) and the pair correlation functian(r) in the
lated as{6,7] random phase approximation are given, respectively, by
P € (K2 + 1/\2)}/2
——-1=-[In(2e) - 1+2 for e<1l (A— ), =
kgt~ L4l V] ( ) S = 2 TN Ko (2.13
249 g
wherey=0.5772... is the Euler’s constant. This is to be com- u(r)
pared with the three-dimensiongdD) Debye-Hiickel result h(r) =- T (2.14
for the pressurep which is regular as an expansion with B
respect to the coupling parameter L
b e u(r) = > J dku(k)explik - r), (2.15
P__1="% for e<1 (3DA—=). (25 (2m)
nksT 6
Here the three-dimensional Debye wave number and the cou- u(k) = — 27;9:/2 ) (2.16
pling parameter are defined, respectively by} (k*+ 1)+ Kp
=4mé/ (kgT) ande=(e?/kgT)/(1/kp). The nonanalytic na-  The interactior(correlation or cohesiveenergy per unit vol-
ture of the expansion appears in the next of@r ume given by
The Debye wave numbé{, characterizes the screening
by many body effects whereasdenotes the inherent decay n_2 dro(nh(r) 2.17)
of interaction. When 1K, <\, the screening is controlled by 2 v '
1/Kp and the result2.4) is still valid. We thus assume, on o . o
the contrary, that is logarithmically divergent forr—0 indicating that the
short-range correlation is not taken into account properly in
elkgT <\ < 1/Kp. (2.6)  this approximation.
We note that this condition is rewritten as B. Thermodynamic quantities by cluster expansion
: :! a 1 To obtain correct thermodynamic quantities, it is neces-
Kpa=2I'<¢= N < (ksT) T 2.7 sary to start from the cluster expansion. The pressuis

given by Mayer’s giant cluster expansion [&10|

and ¢ can be of the order of unity wheln<1.

——=1=-n—my, (2.189

A. Random phase approximation n

whereW is the sum of contributions from the ring diagrams

W, and the prototype graph,. In the prototype graphs, the
interaction potential is replaced by the screened ofre

defined by Eq(2.15 as shown in Fig. 1. In the Coulombic

f dkv(k)explik -r), (2.8)  case(A— ), the interaction is screened into the foff7]

We first note that the Fourier transform of the Yukawa
potential in two dimensions is given by

V0= G2

016405-2
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\N(2)+W/ 4[ |n<23_e2>
FIG. 1. Screened interactian(r). The lines connecting the dots
represent the bare interactiofr) and integrals are taken over po- When Be? <\ < 1/Kp, (see the Appendix

() =t Yol y VoV oY L,

3
2'y+§], (2.27)

Jo(x) (2.19

sitions of dots.
ur)=— f dx

whereJy(x) is the Bessel function.
The contribution of the ring diagram4, is calculated as

S
%7 2n(2m)?

J dk[~ In{1 +nBu(K)} + npu(K)],
(2.20
where 8=1/ksT andnguv(k) =Kp/(k?+1/\?)Y2. The leading

Finally we have
e? 3
W, +\/V(2)~§{—In(2’8—)—2 +—] 2.2
0 p 4 \ Y 2 ( 8)
and the pressure is calculated as
P e 3
- f[— In<2'8—> —2y+ —] (2.29
nksT 4 N 2

The argument of the logarithm expresses that the integral
overr, which is logarithmically divergent for both— 0 and
r— o, is cutoff at3e? and\, respectively.

In the case of Coulomb interactigh — «), we have[6,7]

contribution from the prototype graphs is given by the one

with two junctions

V\/z)——Jdr[exp{ Bu(r)} - 1+,3U(F)—‘{,3U(r)}2]

(2.2)
As is pointed out by one of the authdi®,7], both of the

contributions fromW, and\/\/2 are divergent in the short
range (r—0 ork—«) and cannot be evaluated indepen-

dently. We introduce

ng*
4 (2m)?

W' = f dku(k)v (k)

(2.22

and evaluateN,—-W' and V\/2)+W’ separately as in Refs.

[6,7].

The value ofW,—W' is evaluated as

2
% f dru(r)ov(r) =

Wo-W' == In(1 +Kp\) —
o [(KD )2 "7 Koh
1 KpA
S —2 } (2.23
1+(KD)\) 1+Kp\
and, whenKpA <1, we have
, 5
WO_W -~ ZSKD)\< E. (224)

In evaluatlngV\l(z)+W’ we divide the integral over into
0<r<rgy (I J)r0<r<oc (1), taking ry such thatge?
<r0<)\<1/KD Using this condition, we have

ol )]

I LG

(2.29

(2.26

and therefore

1
WO—W':gs (N — o0), (2.30

+ W2 ~ i[— In(2e) - 2y + g}

)
4 1/Kp

-27+§} (N — ),

2
(2.3)
and
s oo
nkaT 1= [ln(Zs) 1+2y]= [ <21/KD 1+2y
(N — ). (2.32

When the result for the Yukawa systgi.28) is compared
with the Coulombic casé2.31), we see that the long-range
cutoff at 1Ky is replaced by\. This result may be naturally
expected from the conditio2.6). In order to determine the
constant such as -In 2-23/2, however, we need the
analyses in Refg6,7] and the present paper. Similar analy-
ses on the pair correlation function have been done based on
the cluster expansion for the Coulombic c@#].

The Helmholtz free energ¥ is separated into the ideal
gas partF® and the interaction pakF as

F =Fdeals AF, (2.33

where

AF = NKkgTH(T, &) (2.39

andf is a dimensionless function of dimensionless quantities
I' and&. Since

P/nkBT_ 1 = _V(O"/O"V)T’N’)\ f(r,g) = n(&/& n)-,-’}\ f(F,g),
(2.39

we have

016405-3
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TABLE |. Cohesive energy of 2D Yukawa particles obtained by molecular dynamics simulation with the
results of the Coulombic systefi3].

PHYSICAL REVIEW E 70, 016405(2004

r U/TNkgT r U/TNkgT r U/TNkgT r U/TNkgT
£=0.0
0.158 -0.430 0.224 -0.528 0.500 -0.640 0.707 -0.735
1.00 -0.780 1.23 -0.817 1.41 -0.842 1.58 -0.848
1.73 -0.872 1.87 -0.882 2.00 -0.890 2.12 -0.896
2.24 -0.908 2.35 -0.904 2.74 -0.924 5.00 -0.986
7.07 -1.01 15.8 -1.05 22.4 -1.07 50.0 -1.08
£=0.5
0.277 -0.383 0.397 -0.424 0.500 -0.466 0.501 -0.456
0.526 -0.480 0.659 -0.504 1.99 -0.671 3.25 -0.722
3.39 -0.732 6.62 -0.783 10.1 -0.809 13.0 -0.819
13.5 -0.822 19.5 -0.836 33.5 -0.850 49.8 -0.859
52.0 -0.860 69.7 -0.864 96.5 -0.868 102. -0.869
£=1.0
0.133 -0.225 0.198 -0.261 0.202 -0.268 0.332 -0.320
0.346 -0.328 0.393 -0.339 0.528 -0.372 0.661 -0.393
0.667 -0.398 1.32 -0.487 1.60 -0.495 1.78 -0.504
2.71 -0.544 3.05 -0.552 3.06 -0.553 3.20 -0.560
4.14 -0.582 4.44 -0.590 4.96 -0.599 5.65 -0.605
6.03 -0.610 6.56 -0.616 7.22 -0.619 9.91 -0.637
10.1 -0.635 17.3 -0.659 20.3 -0.662 24.4 -0.666
26.6 -0.670 29.4 -0.672 29.9 -0.672 36.3 -0.676
36.6 -0.676 39.9 -0.678 51.6 -0.682 54.8 -0.683
68.0 -0.687 71.8 -0.687 78.0 -0.689 97.8 -0.690
=15
3.19 -0.454 5.42 -0.481 9.62 -0.508 16.2 -0.524
24.9 -0.534 28.4 -0.537 37.1 -0.543 52.8 -0.548
£22.0
0.264 -0.201 0.267 -0.203 0.331 -0.221 0.337 -0.229
0.661 -0.272 0.662 -0.272 0.663 -0.274 1.32 -0.321
2.68 -0.363 3.21 -0.372 3.27 -0.373 3.38 -0.377
6.68 -0.402 6.78 -0.401 9.80 -0.415 10.1 -0.418
13.0 -0.424 19.2 -0.432 20.0 -0.433 25.1 -0.437
27.4 -0.439 31.2 -0.441 329 -0.442 35.7 -0.442
38.7 -0.443 56.2 -0.448 57.3 -0.449 65.9 -0.450
66.2 -0.450 73.3 -0.451 76.3 -0.451 82.6 -0.453
& Be? 3 U=AF+TAS
f(I,8)=- 4[— In<2 N ) -2y+ 2}
1“2[ 3] are calculated as
=——|=-In(2T'§) - 2y+ - |. (2.36
2 2
Th . : € B 1
e nonideal part of the entropyS and the internafcorre- AS= NkBé_l[ln<2T> +2y- 5}

lation or cohesiveenergyU given, respectively, by

and

dAF

as=-
aT

b

(2.37

and

016405-4
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2
U= NkBTg[In<2BTe> +2y- 1}

=NkgT I'qIn(2T¢) + 2y - 1]. (2.40

We note that these results are derived with the condition

(2.7 or A< é<1T.

In the case of Coulomb interactiol\ — ), they are
given by
f(r,é=0)= - z[— IN(28) - 2y + 2] = = T4~ In(2T) - v+ 1],

(2.4

AS(\ — 00) = Nsz[In(Zs) + 2] = Nks'Z[In(2T) + 4],

(2.42)

and
U\ — ) = AF + TAS= NkBTg[ln(zs) +2y-1]

=NkgTT'q2 In(2T") + 2y - 1].
(2.43

IIl. INTERMEDIATE AND STRONG COUPLING

In the case wher&' is not small, the expansion with re-

spect to coupling cannot be applied and we resort to the
numerical simulation. We apply the molecular dynamics to
the system of 256 Yukawa particles. The periodic boundary
condition with the deformable parallelogram unit cell is

adopted. In order to analyze the strongly coupled domain
near possible lattice formation, it may be necessary to take

the deformation of the periodicity into accoyit12]. In this

paper, however, we restrict the coupling parameter within the
domain of fluid where such deformation is expected to have

no serious effect.

By numerical simulations for combinations Bfand¢, we
have obtained the value &f covering the domain of inter-
mediate and strong coupling with &< 2. The results are
summarized in Table | and shown in FiggaR-2(c) in the
form of U/T'NKgT. As in the case of the Coulombic system
[11], we observe that, wheh increasesU approaches the
value (Madelung energyfor triangular lattice[12] as

u'(r,é= % —c(&YI' when T — o,

where the normalized value’=U/NKkgT is a function of
dimensionless parameters ar(@) is a coefficient dependent
on ¢ [12] and is approximately expressed[d$

m2c(£) = - 1.9605 + 0.8939- 0.195%2 + 0.01715°.
(3.2

(3.1

IV. INTERPOLATION FORMULAS

PHYSICAL REVIEW E 70, 016405(2004)

FIG. 2. Interactior(correlation or cohesiyeenergy divided by’
vsT'. In (a), marks are the results of numerical simulations, the solid
lines are interpolated values and the broken lines are analytical
results. In(b) and (c), marks are the results of numerical simula-
tions and the lines are interpolated values.

first consider the values ofU; since the relations
(2.33—2.395, (2.37, and (2.38 hold irrespective of the
strength of coupling, other thermodynamic quantities are de-
rived from the value olJ.

As for the expansion with respect to the coupling param-
eter, we apply the resul.40 in the weak coupling domain
I'=0.05<1:

U'(l,é=TIn@2r& +2y-1], I'<0.05. (4.1

We note thatU reduces to the Madelung energy for the tri-
angular latticg12] as Eq.(3.1) when the coupling is strong

We present here simple interpolation formulas for thermo-enough, and analyze the behavior of the normalized differ-
dynamic quantities of a two-dimensional Yukawa system. Weence from those values,

016405-5



TOTSUJlet al. PHYSICAL REVIEW E 70, 016405(2004)

U —x§-UTé
U'(I'— «,¢) '

(4.2 Y(z,p) = fp dt exp(- H)t* 2, (4.7)
0

which decreases from unity to 0 with the increasd dfom w
0 to. As a result, we find that the decrease can be expressed Ei(-2) =- J dtm_ (4.9
by a simple functional form of-exp(—xI"Y) with a coeffi- z t

cientx=2.55 and the powey=0.18 which are independent

of & for 0.5=<¢=<2. Based on this observation, we finally The pressure is given by

have for 0.05<I'<100 and 0.5 £<2 P ~ (af(l“,g))
U'(I,8) =T - [e(&T - U'(0.058)] neT n
xexd- 2.551°%18-0.0818]. (4.3 = %u’(r,g) - % - %S%G -y
We plot the values given by this interpolation in Figs. y
2(a)-2(c). We confirm that this interpolation works with rela- L1 dc_@)M{y(l xFy) - y(} xl“y)]
tive error less than 1% for ¥8I'<100, less than 3% for 2% d¢ oy y' ! y'
1=<I'=<10, and less than 10% for 0.69'<1. 1 expxay)
For the Coulombic case, we apply the weak coupling re- - 222 HEI(- XY - Ei(- X)), (4.9)
sult (2.43 to the weak coupling domaifi <0.02 2
U'(T,&=0) =TZ2 In(2T) + 2y - 1]. (4.4) The entropy is given by
AS
In the case of intermediate and strong coupling, we use the NI u'(Il, ¢ -f(I,8. (4.10
values previously given by one of the authdds3]. After ke
similar analysis, we have It should be noted that, since the entropy is given as the

) ) difference betweetd'(I', &) andf(I", &), the relative error is
U'(l¢=0)=c(&=0I - [c(£=0'-U'(0.02£=0)] largely enhanced even when bdth(T', &) and f(I', £) have
xexd - 2.55%18-0.0819)] (4.5 small relative errors. The values of(I',&)=AF/NkgT,
P/nksT—-1 andAS/Nkg are shown in Figs. 3-5.

for 0.02<I'<100. The result is also plotted in Figs. In the Coulombic case with 0.62I'<100, we have
2(a)-2(c). Relative error is less than 1% for2l"< 100, less

than 3% for I<I'<2, and less than 15% for 0.62I'<1. f([,&=0) =TIN(2Cy) + y= 1] +c(¢=0)(I' - Ty

Since we have assumed EQ.7) or 2I'<<¢ in deriving exp(xTY)
Eq. (4.1) for the domain of weak coupling, we cannot de- -c(é=0) 1y [Y(Lly,xTY) = p(1ly,xTY)]
crease¢ in Eq. (4.1) to values comparable with. In this yx
sense, the analytical result fbr~ £<1 is left unresolved. In exp(xI'Y) ) _
connecting the weak coupling expressions to that in the in- + ——=U" ('}, €= O)[Ei(- xI"Y) - Ei(- xI})],
termediate and strong coupling domain, we have chdsen
=0.05 for 0.5<¢<2 and'=0.02 for ¢=0 as the limit of (4.11
applicability of analytical results observing the overall be- 5 .
havior of the error. The analysis in the range8<0.5 is L e _
similarly left unresolved in this paper. nkgT 1= 2U (I.£=0), 412

Based on the relation®.33—2.35), (2.37), and (2.38),
we obtain the nonideal part of the Hemholtz free energ)ﬁmd
AF=NkgTf(I", &) for 0.05<I'<100 and 0.5¢<2 as

; - . , 0 " —§=o.o ----- §=1.5
1 SR e =0.5 —£=2.0
f([',¢) = (J + f )—U’(F,f) = _l|:|n(2F1§) +2y- —} -20 R — 10
0 Fl F 2 2 ‘.. L < o Sea
-40 v T
exp(xl“l’){ (1 > o R N
r-ry-cl&————| | —.xxv . e .
#e@ =T —0®= 35| o [ Z ol S >
Yt T T “a.
1 expixy) , -80 02 S NG
- y(;,xl“{)} + TU (T4, H[Ei(=x1Y) o \\§ \
100 [ Y
. 06 N N
- Ei(- XF){)]v (4.6) 20 02 04 06 08 |
. o 20 40 60 80 100
wherel';=0.05,x=2.55,y=0.18, andy(z,p) and E{-z) are r

the incomplete gamma function and the exponential integral FIG. 3. Normalized values of the nonideal part of Helmholz free
function, respectively: energyf=A F/NksT vsT for £=0, 0.5, 1, 1.5, and 2.

016405-6
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0 T
—=0.0
-10 N &=0.5 H
20 s
£ N
< -30
~—
A~ 40 -0.1
02 S
50 (=031 N
0.4
600 02 04 06 08 1
0 20 40 60 80 100 3
r 0 20 40 60 80 100

FIG. 4. Normalized values of the nonideal part of pressure r
P/nkgT—1 vsT for ¢é=0, 0.5, 1, 1.5, and 2. FIG. 5. Normalized values of the nonideal part of entropy
A S/INkg vs T for ¢é=0, 0.5, 1, 1.5, and 2.

AS

o=V (=0 - (I¢=0), (4.13 o (o o (o
ke Ef dr B2u(v —u) ~ Ef dr B2v(v —u) (A2)
whereI';=0.02, x=2.55, andy=0.18. The results are also 0 0
plotted in Figs. 3-5.
V. CONCLUSION is estimated to be of higher order.

. ) . In integrall,, we may evaluate as
We have obtained thermodynamic quantities of a two-

dimensional Yukawa system. In the domain of weak cou- .
pling, the analytical results are derived based on the giant nf drrfexn— 8u) = 1 + Bu — B2u%/2
cluster expansion and the effect of reduced dimensionality is m ; [exp(=Au) pu=p ]

explicitly shown. In the domain of intermediate and strong °

coupling, molecular dynamics have been applied and the re- — anoc drr U331 ~ — anw drr 83331 .
sults are expressed as the simple interpolation formulas. 0 0
These results will be useful in investigating two-dimensional (A3)
systems including the single-layered dust particles in dusty
plasmas.
APPENDIX Here we note that, since<1/Kp, the integrand becomes

. _ B small enough before the many body screening becomes ef-
% IF)](eXalura{tl_rEgle%,/ \)Aﬁ_m/a;\y+p2u/t21;\(2r))] \;;V(r)thandhex;ﬁ P fective and we estimate its value to be of the order of
v(r)]~exp~(Be/r FIATT - Vve thus have e(BEIN)|In(BE/\)| < e. The remaining integral is similarly

r 2 estimated as
wnJ i drr{exp{— ﬂTeexp(— r/)\)} -1+ 'BTezexr(— r/)\)}

0

2 <] [ee]
€ Be 3 WnJ WHJ € ro
~—l=Inl=—|-y+_|. Al — | drrptuw ~— drr22~——ln<2— -yl
4[ <r0>72} (A1) 2 ) ATy ARV VS
The integral (A4)
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