2,249 research outputs found

    Y-type Flux-Tube Formation in Baryons

    Full text link
    For more than 300 different patterns of the 3Q systems, the ground-state 3Q potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} is investigated using SU(3) lattice QCD with 123×2412^3\times 24 at β=5.7\beta=5.7 and 163×3216^3\times 32 at β=5.8,6.0\beta=5.8, 6.0 at the quenched level. As a result of the detailed analyses, we find that the ground-state potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} is well described with so-called Y-ansatz as V3Q=−A3Q∑i<j1∣ri−rj∣+σ3QLmin+C3QV_{\rm 3Q}=-A_{\rm 3Q}\sum_{i<j}\frac1{|{\bf r}_i-{\bf r}_j|} +\sigma_{\rm 3Q} L_{\rm min}+C_{\rm 3Q}, with the accuracy better than 1%. Here, LminL_{\rm min} denotes the minimal value of total flux-tube length. We also studythe excited-state potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} using lattice QCD with 163×3216^3\times 32 at β=5.8,6.0\beta=5.8, 6.0 for more than 100 patterns of the 3Q systems. The energy gap between V3Qg.s.V_{\rm 3Q}^{\rm g.s.} and V3Qe.s.V_{\rm 3Q}^{\rm e.s.}, which physically means the gluonic excitation energy, is found to be about 1 GeV in the typical hadronic scale. Finally, we suggest a possible scenario which connects the success of the quark model to QCD.Comment: Talk given at Color Confinement and Hadrons in Quantum Chromodynamics (Confinement 2003), Saitama, Japan, 21-24 July 2003; 5 pages, 4 figure

    The Structural Change in the Supply Chain of Oil Palm – A Case of North Sumatra Province, Indonesia

    Get PDF
    In this paper, we analyze the structural change in the supply chain of oil palm in North Sumatra, Indonesia, especially after the financial crisis of the late 20th century. We first describe the past and present market structure and conduct of oil palm industries in North Sumatra with an industrial organization approach based on our field study. The analysis reveals that the supply chain of oil palm in North Sumatra has changed such that farmers had more power to determine FFB prices over crushing companies, especially from 2001 through 2004. However, farmers lost bargaining power during 2007-2008 due to a decrease in palm oil demand, plunging of palm oil prices, and a regulation imposed upon crushing companies by the Ministry of Agriculture. To analyze such structural changes empirically, we test the existence of Asymmetric Price Transmission (APT), in which the speed of adjustments of the output price after the input price increases or decreases is different; the existence of APT implies the existence of market power. We apply the (Momentum) Threshold Autoregressive ((M-)TAR) model to estimate APT. According to the estimation results, crushing companies had more power to determine FFB prices over farmers until around March 2002. This situation changed such that farmers had more bargaining power from around April 2002 to around April 2007 before the power became balanced. The structural change test also shows these time points as optimal structural change points. The APT estimation, however, has little rigorous theoretical background, and the concept of APT is not necessarily related to market power. Hence, we next analyze the market power of crushers and farmers both theoretically and empirically. The estimation result of market power indicates that the farmers had no market power before the third quarter of 2002, but they did have market power from the next quarter to the first quarter of 2008, after which time they again lose market power. These empirical results are consistent both with each other and with the descriptions of the structural change. Finally, we conclude and draw some implications for farmers, crushers, and consumers of palm oil.Indonesian palm oil, market power, Asymmetric Price Transmission (APT), (Momentum) Threshold Autoregressive ((M-)TAR) model., Agribusiness, Agricultural and Food Policy, Community/Rural/Urban Development, Food Consumption/Nutrition/Food Safety, Labor and Human Capital,

    Constructions of Generalized Concatenated Codes and Their Trellis-Based Decoding Complexity

    Get PDF
    In this correspondence, constructions of generalized concatenated (GC) codes with good rates and distances are presented. Some of the proposed GC codes have simpler trellis omplexity than Euclidean geometry (EG), Reed–Muller (RM), or Bose–Chaudhuri–Hocquenghem (BCH) codes of approximately the same rates and minimum distances, and in addition can be decoded with trellis-based multistage decoding up to their minimum distances. Several codes of the same length, dimension, and minimum distance as the best linear codes known are constructed

    Hadron-hadron interaction from SU(2) lattice QCD

    Full text link
    We evaluate interhadron interactions in two-color lattice QCD from Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are performed in quenched SU(2) QCD with the plaquette gauge action at β=2.45\beta = 2.45 and the Wilson quark action. We concentrate on S-wave scattering states of two scalar diquarks. Evaluating different flavor combinations with various quark masses, we try to find out the ingredients in hadronic interactions. Between two scalar diquarks (uCγ5du C\gamma_5 d, the lightest baryon in SU(2) system), we observe repulsion in short-range region, even though present quark masses are not very light. We define and evaluate the "quark-exchange part" in the interaction, which is induced by adding quark-exchange diagrams, or equivalently, by introducing Pauli blocking among some of quarks. The repulsive force in short-distance region arises only from the "quark-exchange part", and disappears when quark-exchange diagrams are omitted. We find that the strength of repulsion grows in light quark-mass regime and its quark-mass dependence is similar to or slightly stronger than that of the color-magnetic interaction by one-gluon-exchange (OGE) processes. It is qualitatively consistent with the constituent-quark model picture that a color-magnetic interaction among quarks is the origin of repulsion. We also find a universal long-range attractive force, which enters in any flavor channels of two scalar diquarks and whose interaction range and strength are quark-mass independent. The weak quark-mass dependence of interaction ranges in each component implies that meson-exchange contributions are small and subdominant, and the other contributions, {\it ex.} flavor exchange processes, color-Coulomb or color-magnetic interactions, are considered to be predominant, in the quark-mass range we evaluated.Comment: 14 pages, 20 figure

    Spectral and Timing Nature of the Symbiotic X-ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in an X-ray Binary System

    Get PDF
    The symbiotic X-ray binary 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4h NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 years. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe Kalpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60-80%), and the location in the Corbet diagram favor high B-field (>~1e+12 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1e+33-1e+35 erg/s), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1e+13 G NS, this scheme can explain the ~5.4 h equilibrium rotation without employing the magnetar-like field (~1e+16 G) required in the disk accretion case. The time-scales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfven shell for a ~1e+13 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.Comment: 20 pages, 18 figures, 3 tables, accepted for publication in the Astrophysical Journa

    Low-energy expansion formula for one-dimensional Fokker-Planck and Schr\"odinger equations with periodic potentials

    Full text link
    We study the low-energy behavior of the Green function for one-dimensional Fokker-Planck and Schr\"odinger equations with periodic potentials. We derive a formula for the power series expansion of reflection coefficients in terms of the wave number, and apply it to the low-energy expansion of the Green function

    An Approach to N=4{\cal N}=4 ADE Gauge Theory on K3

    Full text link
    We propose a recipe for determination of the partition function of N=4{\cal N}=4 ADEADE gauge theory on K3K3 by generalizing our previous results of the SU(N) case. The resulting partition function satisfies Montonen-Olive duality for ADEADE gauge group.Comment: 28 pages, Latex, enlarged published versio

    Group Chase and Escape

    Full text link
    We describe here a new concept of one group chasing another, called "group chase and escape", by presenting a simple model. We will show that even a simple model can demonstrate rather rich and complex behavior. In particular, there are cases in which an optimal number of chasers exists for a given number of escapees (or targets) to minimize the cost of catching all targets. We have also found an indication of self-organized spatial structures formed by both groups.Comment: 13 pages, 12 figures, accepted and to appear in New Journal of Physic

    Detailed analysis of the gluonic excitation in the three-quark system in lattice QCD

    Full text link
    We study the excited-state potential and the gluonic excitation in the static three-quark (3Q) system using SU(3) lattice QCD with 163×3216^3\times 32 at β\beta=5.8 and 6.0 at the quenched level. For about 100 different patterns of spatially-fixed 3Q systems, we accurately extract the excited-state potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} together with the ground-state potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} by diagonalizing the QCD Hamiltonian in the presence of three quarks. The gluonic excitation energy ΔE3Q≡V3Qe.s.−V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} is found to be about 1 GeV at the typical hadronic scale. This large gluonic-excitation energy is conjectured to give a physical reason of the success of the quark model for low-lying hadrons even without explicit gluonic modes. We investigate the functional form of ΔE3Q\Delta E_{\rm 3Q} in terms of the 3Q location. The lattice data of ΔE3Q\Delta E_{\rm 3Q} are relatively well reproduced by the ``inverse Mercedes Ansatz'' with the ``modified Y-type flux-tube length'', which indicates that the gluonic-excitation mode is realized as a complicated bulk excitation of the whole 3Q system.Comment: 13pages, 13figure

    Subaru high resolution spectroscopy of complex metal absorption lines of QSO HS1603+3820

    Get PDF
    We present a high resolution spectrum of the quasar, HS1603+3820 (z_em=2.542), observed with the High Dispersion Spectrograph (HDS) on Subaru Telescope. This quasar, first discovered in the Hamburg/CfA Quasar Survey, has 11 C IV lines at 1.96 < z_abs < 2.55. Our spectrum covers 8 of the 11 C IV lines at z_abs > 2.29 and resolves some of them into multiple narrow components with b < 25 km/s because of the high spectral resolution R=45000, while other lines show broad profiles (b > 65 km/s). We use three properties of C IV lines, specifically, time variability, covering factor, and absorption line profile, to classify them into quasar intrinsic absorption lines (QIALs) and spatially intervening absorption lines (SIALs). The C IV lines at 2.42 < z_abs < 2.45 are classified as QIALs in spite of their large velocity shifts from the quasar. Perhaps they are produced by gas clouds ejected from the quasar with the velocity of v_ej = 8000 km/s -- 10000 km/s. On the other hand, three C IV lines at 2.48 < z_abs < 2.55 are classified as SIALs, which suggests there exist intervening absorbers near the quasar. We, however, cannot rule out QIALs for the two lines at z_abs ~ 2.54 and 2.55, because their velocity shifts, 430 km/s blueward and 950 km/s redward of the quasar, are very small. The C IV line at z_abs ~ 2.48 consists of many narrow components, and has also corresponding low-ionization metal lines (Al II, Si II, and Fe II). The velocity distribution of these low-ionization ions is concentrated at the center of the system compared to that of high-ionization C IV ion. Therefore we ascribe this system of absorption lines to an intervening galaxy.Comment: 35 pages, 11 figures, accepted for publication in the Astronomical Journa
    • …
    corecore