46 research outputs found

    Crystallization of the Ca2+-ATPase of Sarcoplasmic Reticulum by Calcium and Lanthanide Ions

    Get PDF
    Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop in sarcoplasmic reticulum vesicles exposed to Ca2+ or lanthanide ions. The Ca2+- or lanthanide-induced crystals are presumed to represent the E1 conformation of the Ca2+-ATPase, and their crystal form is clearly different from the earlier described E2 crystals induced by Na3VO4 in the presence of ethylene glycol bis(beta aminoethyl ether)-N,N,N',N'-tetraacetic acid (Taylor, K. A., Dux, L., and Martonosi, A. (1984) J. Mol. Biol. 174, 193-204). Analysis of the crystalline arrays by negative staining or freeze-fracture electron microscopy reveals obliquely oriented rows of particles corresponding to individual Ca2+-ATPase molecules. Computer analysis of the negatively stained lanthanide-induced crystalline Ca2+-ATPase arrays shows that the molecules are arranged in a P1 lattice. The pear-shaped profiles of Ca2+-ATPase molecules seen in projection in the density maps are similar to those seen in vanadate-induced crystals. The space group and unit cell dimensions of the E1 crystals are consistent with Ca2+-ATPase monomers as structural units, while the vanadate-induced E2 crystals form by lateral aggregation of chains of Ca2+-ATPase dimers. The transition between the E1 and E2 conformations may involve a shift in the monomer-oligomer equilibrium of the Ca2+-ATPase. The formation of E1 crystals by PrCl3 is promoted by inside negative membrane potential, presumably through stabilization of the E1 conformation of the enzyme. Cleavage of the Ca2+-ATPase by trypsin into two major fragments (A and B) did not interfere with the Ca2+- or the Pr3+-induced crystallization

    Local Oxidative and Nitrosative Stress Increases in the Microcirculation during Leukocytes-Endothelial Cell Interactions

    Get PDF
    Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2•−) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2•− and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2•− and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2•− and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2•− increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2•− and peroxynitrite concentration in the lumen. The increased O2•− and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2•− in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes.

    Get PDF
    The metabolic activity of chondrocytes in articular cartilage is influenced by alterations in the osmotic environment of the tissue, which occur secondary to mechanical compression. The mechanism by which osmotic stress modulates cell physiology is not fully understood and may involve changes in the physical properties of the membrane or the cytoskeleton. The goal of this study was to determine the effect of the osmotic environment on the mechanical and physical properties of chondrocytes. In isoosmotic medium, chondrocytes exhibited a spherical shape with numerous membrane ruffles. Normalized cell volume was found to be linearly related to the reciprocal of the extracellular osmolality (Boyle van't Hoff relationship) with an osmotically active intracellular water fraction of 61%. In deionized water, chondrocytes swelled monotonically until lysis at a mean apparent membrane area 234 +/- 49% of the initial area. Biomechanically, chondrocytes exhibited viscoelastic solid behavior. The instantaneous and equilibrium elastic moduli and the apparent viscosity of the cell were significantly decreased by hypoosmotic stress, but were unchanged by hyperosmotic stress. Changes in the viscoelastic properties were paralleled by the rapid dissociation and remodeling of cortical actin in response to hypoosmotic stress. These findings indicate that the physicochemical environment has a strong influence on the viscoelastic and physical properties of the chondrocyte, potentially through alterations in the actin cytoskeleton

    Correlating the kinetics of cytokine-induced E-selectin adhesion and expression on endothelial cells.

    Get PDF
    Many human diseases are mediated through the immune system. In chronic inflammatory disorders, the processes ordinarily involved in tissue healing become destructive. Endothelial cells normally recruit leukocytes to inflamed tissue using cytokine-induced adhesion receptors on the surfaces of interacting cells. Leukocyte capture depends on specialized characteristics of these receptors, particularly the binding kinetics. This study is designed to clarify the relationship between cytokine-induced changes in cell properties and binding kinetics. Here, we measure the kinetics of expression and monoclonal antibody binding for E-selectin in interleukin-1alpha-stimulated microvascular endothelium in vitro and incorporate the data into kinetic models. Quantitative flow cytometry is used to determine molecular density (expression), and micropipette assays are used to find the probability of adhesion (function). Within five hours of interleukin-1alpha stimulation, E-selectin density increases from 0 to 742 sites/microm(2), and antibody-E-selectin adhesion probability increases from a baseline of 6.3% to 64%. A kinetic model is applied to find an apparent association rate constant, k(f), of 3.7 x 10(-14) cm(2)/sec for antibody-E-selectin binding. Although the model successfully predicts experimental results, the rate constant is undervalued for a diffusion-limited process, suggesting that functional adhesion may be modified through cytokine-induced changes in microtopology and receptor localization

    Selective ion binding and membrane activity of synthetic cyclopeptides

    No full text
    Four cyclic peptides related to the membrane-active complexones PV, cyclo-(l-Pro-l-Val-d-Pro-d-Val)3, and valinomycin were synthesized: (1) cyclo-(l-Pro-l-Ala-d-Pro-d-Val)3 or PVPA, (2) cyclo-(l-Ala-l-Val-d-Pro-d-Val)3 or PVAV, (3) cyclo-(l-Pro-l-Val-d-Pro-d-Val)2-l-Pro-d-Val or PV-10, (4) cyclo-(l-Pro-l-Val-d-Pro-d-Val)2 or PV-8. In a two-phase extraction assay the affinity of PV and PVPA for alkali picrates was about three orders or magnitude greater than that of valinomycin. It was about equal to valinomycin for PVAV and much lower for PV-10 and PV-8. PV, PVPA and PVAV showed a selectivity sequence similar to that of valinomycin, namely K+ ∼ Rb+ > Cs+ > Na+ > Li+. In the series PV, PV-10, PV-8 the preference for K+ over Na+ was 700, 5 and + over Na+ by reducing the ring size from 12 to 8 amino acid residues. In sheep red cell lipid bilayer membranes PVPA increased the membrane conductance significantly in the presence of either KCl or NaCl but it was less potent than PV. PV-10, PV-8 and PVAV on the other hand were ineffective in this assay. The inactivity of PVAV as a potassium carrier in membranes was in contrast to its high affinity for potassium picrate in two-phase assays. Such a behaviour may be observed of a compound that has too low an aqueous cation binding constant to use the solution-complexation mechanism of PV (Davis et al. (1976) Biochemistry 15, 768–774 and Pinkerton et al. (1969) Biochem. Biophys. Res. Commun. 35, 512–518) and too slow binding and release kinetics to use the interfacial-complexation mechanism of valinomycin
    corecore