5,586 research outputs found

    Continuously wavelength-tunable high harmonic generation via soliton dynamics

    Full text link
    We report generation of high harmonics in a gas-jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas-jet is placed directly at the fiber output. As the energy increases the ionization-induced soliton blue-shift is transferred to the high harmonics, leading to a emission bands that are continuously tunable from 17 to 45 eV

    Gas pressure sintering of Beta-Sialon with Z=3

    Get PDF
    An experiment conducted on beta-sialon in atmospheric pressure, using a temperature of 2000 C and 4 MPa nitrogen atmosphere, is described. Thermal decomposition was inhibited by the increase of the nitrogen gas pressure

    Single molecule and single quantum dot photodynamics by polarization-rotating modulation microscopy

    Get PDF
    We present our recent study of polarization modulating fluorescence imaging microscopy on single CdSe colloidal quantum dots (QDs) and quantum rods (QRs) adsorbed on silica glass substrates at room temperatures. Simple optical setup is introduced to provide detection of emission profiles projected on to the sample plane as well as detection of rotating excitation polarization effect. While most studies so far in structural changes in biological or amorphous systems rely on extrinsic fluorophores with linear transition dipoles, those with twofold degenerate dipoles are noteworthy due to the intrinsic advantage for 3D orientation information. Performance of modulations is also evaluated in combination with tetramethylrodamine moieties as typical linear emitters. CdSe QDs with aspect ratio of 1.3 actually reveal plane-polarized emission at room temperature and, based on maximum-likelihood analysis, are exceptionally highly oriented on silica glass substrates

    Improved Nonrelativistic QCD for Heavy Quark Physics

    Get PDF
    We construct an improved version of nonrelativistic QCD for use in lattice simulations of heavy quark physics, with the goal of reducing systematic errors from all sources to below 10\%. We develop power counting rules to assess the importance of the various operators in the action and compute all leading order corrections required by relativity and finite lattice spacing. We discuss radiative corrections to tree level coupling constants, presenting a procedure that effectively resums the largest such corrections to all orders in perturbation theory. Finally, we comment on the size of nonperturbative contributions to the coupling constants.Comment: 40 pages, 2 figures (not included), in LaTe

    63/65^{63/65}Cu- and 35/37^{35/37}Cl-NMR Studies of Triplet Localization in the Quantum Spin System NH4_4CuCl3_3

    Full text link
    63/65^{63/65}Cu- and 35/37^{35/37}Cl-NMR experiments were performed to investigate triplet localization in the S=1/2S=1/2 dimer compound NH4_4CuCl3_3, which shows magnetization plateaus at one-quarter and three-quarters of the saturation magnetization. In 63/65^{63/65}Cu-NMR experiments, signal from only the singlet Cu site was observed, because that from the triplet Cu site was invisible due to the strong spin fluctuation of onsite 3dd-spins. We found that the temperature dependence of the shift of 63/65^{63/65}Cu-NMR spectra at the singlet Cu site deviated from that of macroscopic magnetization below T=6 K. This deviation is interpreted as the triplet localization in this system. From the 35/37^{35/37}Cl-NMR experiments at the 1/4-plateau phase, we found the two different temperature dependences of Cl-shift, namely the temperature dependence of one deviates below T=6 K from that of the macroscopic magnetization as observed in the 63/65^{63/65}Cu-NMR experiments, whereas the other corresponds well with that of the macroscopic magnetization in the entire experimental temperature region. We interpreted these dependences as reflecting the transferred hyperfine field at the Cl site located at a singlet site and at a triplet site, respectively. This result also indicates that the triplets are localized at low temperatures. 63/65^{63/65}Cu-NMR experiments performed at high magnetic fields between the one-quarter and three-quarters magnetization plateaus have revealed that the two differently oriented dimers in the unit cell are equally occupied by triplets, the fact of which limits the theoretical model on the periodic structure of the localized triplets.Comment: 19 pages, 9 figures, submitted to PRB (in press
    • …
    corecore