13,210 research outputs found

    Electronic charge density in helium in the first order shielding approximation

    Get PDF
    Electronic charge density for ground state of helium as function of nuclear charg

    Some Remarks on the Use of the Variational Principle for the Second Order Energy

    Get PDF
    Approximate ground state wave function used in variational principle for second order energ

    Some remarks on the sternheimer potential

    Get PDF
    Generalization of Sternheimer potential to include wave functions with spi

    Energy Density-Flux Correlations in an Unusual Quantum State and in the Vacuum

    Full text link
    In this paper we consider the question of the degree to which negative and positive energy are intertwined. We examine in more detail a previously studied quantum state of the massless minimally coupled scalar field, which we call a ``Helfer state''. This is a state in which the energy density can be made arbitrarily negative over an arbitrarily large region of space, but only at one instant in time. In the Helfer state, the negative energy density is accompanied by rapidly time-varying energy fluxes. It is the latter feature which allows the quantum inequalities, bounds which restrict the magnitude and duration of negative energy, to hold for this class of states. An observer who initially passes through the negative energy region will quickly encounter fluxes of positive energy which subsequently enter the region. We examine in detail the correlation between the energy density and flux in the Helfer state in terms of their expectation values. We then study the correlation function between energy density and flux in the Minkowski vacuum state, for a massless minimally coupled scalar field in both two and four dimensions. In this latter analysis we examine correlation functions rather than expectation values. Remarkably, we see qualitatively similar behavior to that in the Helfer state. More specifically, an initial negative energy vacuum fluctuation in some region of space is correlated with a subsequent flux fluctuation of positive energy into the region. We speculate that the mechanism which ensures that the quantum inequalities hold in the Helfer state, as well as in other quantum states associated with negative energy, is, at least in some sense, already ``encoded'' in the fluctuations of the vacuum.Comment: 21 pages, 7 figures; published version with typos corrected and one added referenc

    A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

    Full text link
    We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Averaged Energy Inequalities for the Non-Minimally Coupled Classical Scalar Field

    Full text link
    The stress energy tensor for the classical non-minimally coupled scalar field is known not to satisfy the point-wise energy conditions of general relativity. In this paper we show, however, that local averages of the classical stress energy tensor satisfy certain inequalities. We give bounds for averages along causal geodesics and show, e.g., that in Ricci-flat background spacetimes, ANEC and AWEC are satisfied. Furthermore we use our result to show that in the classical situation we have an analogue to the phenomenon of quantum interest. These results lay the foundations for analogous energy inequalities for the quantised non-minimally coupled fields, which will be discussed elsewhere.Comment: 8 pages, RevTeX4. Minor typos corrected; version to appear in Phys Rev

    On Gauge Invariance and Spontaneous Symmetry Breaking

    Get PDF
    We show how the widely used concept of spontaneous symmetry breaking can be explained in causal perturbation theory by introducing a perturbative version of quantum gauge invariance. Perturbative gauge invariance, formulated exclusively by means of asymptotic fields, is discussed for the simple example of Abelian U(1) gauge theory (Abelian Higgs model). Our findings are relevant for the electroweak theory, as pointed out elsewhere.Comment: 13 pages, latex, no figure
    corecore