273 research outputs found
A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells
Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial
Comprehensive polyphenolic profiling in promising resistant grapevine hybrids including 17 novel breeds in northern Italy
7openInternationalItalian coauthor/editorBACKGROUND: A promising way to overcome the susceptibility of Vitis vinifera L. to fungal diseases is the integration of genetic resistance by the interspecific crossing between V. vinifera varieties and resistant species. However, the products of such hybrids are still not accepted by customers, particularly due to their organoleptic characteristics, not least influenced by their polyphenolic profile.RESULTS: A total of 58 resistant breeding lines, 41 from international programs and 17 new progeny individuals, were grown in one untreated vineyard to exclude any variances by climatic and pedologic conditions or vineyard practice. A total of 60 poly-phenols (including acids, anthocyanins, flavonols, flavan-3-ols, and stilbenoids) were determined in grapevine berries by ultrahigh-performance liquid chromatography–mass spectrometry in two consecutive years. The overall profiles were rather consistent (variation P > 0.05) within the two harvests, with the exceptions of epicatechin and caftaric acid. Anthocyanin diglucosides were found in ten of the red breeding lines, malvidin-3,5-O-diglucoside being predominant in nine of them. Total polyphenol content of the unknown progeny individuals and international breeding lines was comparable, with the exception of significantly increased amounts of gallic acid and some flavonoids.CONCLUSION: The comprehensive study reported herein of the polyphenolic profile of hybrids from international breeding programs, but also of new breeds from private initiatives, all cultivated in the same vineyard, will support the selection of promising candidates for further breeding programs to overcome impairment due to undesired sensory characteristics of new highlyr esistant varietiesopenGratl, V.; Sturm, S.; Zini, E.; Letschka, T.; Stefanini, M.; Vezzulli, S.; Stuppner, H.Gratl, V.; Sturm, S.; Zini, E.; Letschka, T.; Stefanini, M.; Vezzulli, S.; Stuppner, H
Microtubule inhibition as a proposed mechanism for the anthelmintic effect of phytochemicals isolated from Cicerbita alpina
The alpine plant Cicerbita alpina (L.) Wallr., when grown as a sprout, is known as a bitter-tasting culinary delicacy. Recently it has also been reported to have anthelmintic activity, prompting further investigation into its mechanism of action. Liquid-liquid fractions were prepared from a methanolic extract of the aerial parts and were submitted in parallel to embryo development (ED), worm motility (WMT), and cytotoxicity assays for anthelmintic and toxicity evaluations. The anthelminthic assays revealed the more polar fractions to be most active against Ascaridia galli embryos (BuOH | 68% ED | c = 500 μg/ml and EtOAc | 65% ED | c = 500 μg/ml) and Caenorhabditis elegans adult worms (BuOH | 49% WMT | c = 150 μg/ml and EtOAc | 74% WMT | c = 150 μg/ml) suggesting the fraction's constituents possess dual anthelmintic activity against multiple life-cycle stages (i.e., eggs, worms) of helminths. Additionally, the BuOH fraction was non-cytotoxic to human cell-lines. Subsequent FCC and SEC derived subfractions were submitted to the anthelmintic assay workflow and the enriched subfractions B1 and E3.8, phytochemically assigned as 11-β,13-dihydrolactucin and luteolin, demonstrated bioactivity against the embryo phenotype (B1 | 58% ED | c = 1.8 μM and E3.8 | 46% ED | c = 1.7 μM) within range of the flubendazole control. Furthermore, luteolin was found to inhibit C. elegans egg hatching (luteolin | 65% EH | c = 10 μM | t = 10 h) within the range of the control albendazole. Both identified anthelmintic phytochemicals were found to affect tubulin polymerisation at a concentration of c = 50 μM. Together with in silico virtual screening studies, these results suggest microtubule stabilisation as a possible anthelmintic target and mechanism of action. This work effectively advocates the consideration of C. alpina extracts and fractions for the development of herbal therapeutics against parasitic helminth
Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation.
Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and β-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead
Lignan Derivatives from Krameria lappacea Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro
The roots of Krameria lappacea are used traditionally
against oropharyngeal inflammation. So far, the astringent and antimicrobial properties of its proanthocyanidin constituents are considered to account for the anti-inflammatory effect. The aim of the present study was to characterize pharmacologically a lipophilic extract of K.
lappacea roots and several isolated lignan derivatives (111) in terms of their putative anti-inflammatory activity. The dichloromethane extract (ID50 77 \u3bcg/cm2) as well compounds 111 (ID50 0.310.60 \u3bcmol/cm2) exhibited topical antiedematous properties comparable to those of indomethacin (ID50 0.29 \u3bcmol/cm2) in a mouse ear in vivo model. Two of the most potent compounds,
2-(2-hydroxy-4-methoxyphenyl)-5-(3-hydroxypropyl)benzofuran (5) and (+)-conocarpan (7), were studied regarding their time-dependent edema development and leukocyte infiltration up to 48 h after croton oil-induced dermatitis induction, and they showed activity profiles similar to that of hydrocortisone. In vitro studies of the isolated lignan derivatives demonstrated the inhibition of NFkB, cyclooxygenase-1 and -2, 5-lipoxygenase, and microsomal prostaglandin E2 synthase-1 as well as antioxidant properties, as mechanisms possibly contributing to the observed in vivo effects. The present findings not only support the ethnopharmacological use of K. lappacea roots but also reveal that the isolated lignan derivatives contribute strongly to the anti-inflammatory activity of this
herbal drug
Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project
ABSTRACT: Inflammation is part of numerous pathological conditions, which are lacking satisfying treatment and effective concepts of prevention. A national research network project, DNTI, involving scientists from six Austrian universities as well as several external partners aimed to identify and characterize natural products capable of combating inflammatory processes specifically in the cardiovascular system. The combined use of computational techniques with traditional knowledge, high-tech chemical analysis and synthesis, and a broad range of in vitro, cell-based, and in vivo pharmacological models led to the identification of a series of promising anti-inflammatory drug lead candidates. Mechanistic studies contributed to a better understanding of their mechanism of action and delivered new knowledge on the molecular level of inflammatory processes. Herein, the used approaches and selected highlights of the results of this interdisciplinary project are presented. GRAPHICAL ABSTRACT: [Image: see text
Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts
Semisynthetic and Natural Garcinoic Acid Isoforms as New mPGES-1 Inhibitors
Over the last twenty years, tocotrienol analogues raised great interest because of their higher level and larger domain of biological activities when compared with tocopherols. Amongst the most promising therapeutic application, anti-inflammatory potency has been evaluated through the inhibition of various mediators of inflammation. Here, we worked on the isolation of two natural isoforms of garcinoic acid (i.e., δ and γ) from two different sources, respectively, Garcinia kola seeds and Garcinia amplexicaulis bark. We also developed semisynthetic strategies to access the other two non-natural α- and β-garcinoic acid isoforms. In the next stage of our work, microsomal prostaglandin E2 synthase was defined as a target to evaluate the anti-inflammatory potential of the four garcinoic acid isomers. Both dimethylated isoforms, β- and γ-garcinoic acid, exhibited the lowest IC50, 2.8 µM and 2.0 µM, respectively. These results showed that the affinity of tocotrienol analogues to microsomal prostaglandin E2 synthase-1 most probably contributes to the anti-inflammatory potential of this class of derivatives
- …
