2,036 research outputs found
Defect structure of web silicon ribbon
The results of a preliminary study of two dendritic web samples are presented. The structure and electrical activity of the defects in the silicon webs were studied. Optical microscopy of chemically etched specimens was used to determine dislocation densities. Samples were mechanically polished, then Secco etched for approximately 5 minutes. High voltage transmission electron microscopy was used to characterize the crystallographic nature of the defects
Decoherence and single electron charging in an electronic Mach-Zehnder interferometer
We investigate the temperature and voltage dependence of the quantum
interference in an electronic Mach-Zehnder interferometer using edge channels
in the integer quantum-Hall-regime. The amplitude of the interference fringes
is significantly smaller than expected from theory; nevertheless the functional
dependence of the visibility on temperature and bias voltage agrees very well
with theoretical predictions. Superimposed on the Aharonov-Bohm (AB)
oscillations, a conductance oscillation with six times smaller period is
observed. The latter depends only on gate voltage and not on the AB-phase, and
may be related to single electron charging.Comment: 4 pages, 6 figures, discussion of charging effect change
Defect structure of EFG silicon ribbon
The defect structure of EFG ribbons was studied using EBIC, TEM and HVEM. By imaging the same areas in EBIC and HVEM, a direct correlation between the crystallographic nature of defects and their electrical properties was obtained. (1) Partial dislocations at coherent twin boundaries may or may not be electrically active. Since no microprecipitates were observed at these dislocations it is likely that the different electrical activity is a consequence of the different dislocation core structures. (2) 2nd order twin joins were observed which followed the same direction as the coherent first order twins normally associated with EFG ribbons. These 2nd order twin joins are in all cases strongly electrically active. EFG ribbons contain high concentrations of carbon. Since no evidence of precipitation was found with TEM it is suggested that the carbon may be incorporated into the higher order twin boundaries now known to exist in EFG ribbons
Measurement of the Transmission Phase through a Quantum Dot Embedded in One Arm of an Electronic Mach-Zehnder Interferometer
We investigate an electronic Mach-Zehnder interferometer with high visibility
in the quantum Hall regime. The superposition of the electrostatic potentials
from a quantum point contact (QPC) and the residual disorder potential from
doping impurities frequently results in the formation of inadvertent quantum
dots (QD) in one arm of the interferometer. This gives rise to resonances in
the QPC transmission characteristics. While crossing the QD resonance in
energy, the interferometer gains a phase shift of in the interference
pattern.Comment: 5 pages, 4 figure
Edge Channel Interference Controlled by Landau Level Filling
We study the visibility of Aharonov-Bohm interference in an electronic
Mach-Zehnder interferometer (MZI) in the integer quantum Hall regime. The
visibility is controlled by the filling factor and is observed only
between and 1.0, with an unexpected maximum near .
Three energy scales extracted from the temperature and voltage dependences of
the visibility change in a very similar way with the filling factor, indicating
that the different aspects of the interference depend sensitively on the local
structure of the compressible and incompressible strips forming the quantum
Hall edge channels.Comment: 5 pages, 5 figures, final version accepted for publication in Phys.
Rev.
Emission rate and chemical state estimation by 4-dimensional variational inversion
This study aims to assess the potential and limits of an advanced inversion method to estimate pollutant precursor sources mainly from observations. Ozone, sulphur dioxide, and partly nitrogen oxides observations are taken to infer source strength estimates. As methodology, the four-dimensional variational data assimilation technique has been generalised and employed to include emission rate optimisation, in addition to chemical state estimates as usual objective of data assimilation. To this end, the optimisation space of the variational assimilation system has been complemented by emission rate correction factors of 19 emitted species at each emitting grid point, involving the University of Cologne mesoscale EURAD model. For validation, predictive skills were assessed for an August 1997 ozone episode, comparing forecast performances of pure initial value optimisation, pure emission rate optimisation, and joint emission rate/initial value optimisation. <br><br> Validation procedures rest on both measurements withheld from data assimilation and prediction skill evaluation of forecasts after the inversion procedures. Results show that excellent improvements can be claimed for sulphur dioxide forecasts, after emission rate optimisation. Significant improvements can be claimed for ozone forecasts after initial value and joint emission rate/initial value optimisation of precursor constituents. The additional benefits applying joint emission rate/initial value optimisation are moderate, and very useful in typical cases, where upwind emission rate optimisation is essential. In consequence of the coarse horizontal model grid resolution of 54 km, applied in this study, comparisons indicate that the inversion improvements can rest on assimilating ozone observations only, as the inclusion of NO<sub>x</sub> observations does not provide additional forecast skill. Emission estimates were found to be largely independent from initial guesses from emission inventories, demonstrating the potential of the 4D-var method to infer emission rate improvements. The study also points to the need for improved horizontal model resolution to more efficient use of NO<sub>x</sub> observations
Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field
We have investigated the magnetoconductance of semiconducting carbon
nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the
direct observation of the predicted band-gap closure and the reopening of the
gap under variation of the applied magnetic field. We also highlight the
important influence of mechanical strain on the magnetoconductance of the CNTs.Comment: 4 pages, 4 figure
Nonequilibrium effects in superconducting necks of nanoscopic dimensions
We have fabricated superconducting connecting necks of Pb with a scanning
tunneling microscope (STM) and studied their properties under magnetic fields
near the transition to the resistive state. A striking phenomenology is found
with two well defined conduction regimes as a function of the magnetic field.
We discuss the possible origin of this behavior in terms of the interplay
between the field dependence of the quasiparticle charge imbalance length
and the length of the neck which is superconducting under field.Comment: 11 pages, 3 figures; to be published in Physics Letters
- …
