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DEFECT STRUCTURE OF EFG SILICON RIBBON

by

H.Strunkt , B. Cunningham and D. Ast
Materials Science and Engineering
Bard Hall, Cornell University
Ithaca, New York 14853

ABSTRACT

The defect structure of EFG ribbons has been studied using . EBIC, TEM and

HM. By imaging the same areas in ERIC and R M a direct correlation between

the crystallographic nature of defects and their electrical properties has been

obtained.(i) Partial dislocations at coherent twin boundaries may or may not be

electrically active. Since no microprecipitates were observed at these dislo-

cations it is likely that the different electrical activity is a consequence of

the different dislocation core structures. (ii) 2nd order twin Joins were observed

which followed the same direction as the coherent first order twins normally

associated with M ribbons. These 2nd order twin Joins are in all cases strongly

electrically active.

EFG ribbons contain high concentrations of carbon. Since no evidence of

precipitation was found with T_̂ M it is suggested that the carbon may be incorporated

into the higher order twin boundaries now ]mown to exist in EFG ribbons.

t Permanent address: Max Planck Institut fur N.etallforschung, Institut fur
Physik, 7000 Stuttgart 80, FRG.
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1. TVTRMUCTIM

Rapid progress has recently been made in the production process of edge defined

film-fed growth (EFG) silicon /l/. EFG ribbon is a premising material for the production

of inexpensive solar cells and therefore an understanding of the relationship between

the crystallographic nature of the defects and their electrical properties is desirable.

This information can than hopefully be used to modify the ribbon growth process to re-

duce the density of defects which decrease the efficiencies of solar cells.

After a summary of the characteristic defect structure of various EFG silicon

ribbons, results are presented which were obtained by correlating EBIC measurements

and HVEM observations on selected defects.

2. MGWn4MTAL TEMIQUES

The electrical properties (i.e. enhanced minority carrier recombination) were

investigated in the scanning electron microscope (SEM) operated in the electron beam-

induced current (ERIC) mode.Scrottky diodes were produced by evaporating a thin film
0

of A10,500A) onto one surface /2/. EBIC images exhibit dark contrast at defects which

act as recombination sites for minority carriers, with an EBIC resolution of %1-2Um.

The EBIC technique can be extended to obtain quantitative information. The collected

current can be measured as a function of specimen co-ordinates allowing the determin-

ation of 'recombination efficiencies' of specific defects /3/, minority carrier

lifetime /4/ and trap level measurements /5/ are possible using high speed beam blanking

techniques. These extensions of the EBIC technique are currently being introduced.

Defect structures were Investigated by transmission electron microscopy (TEM).

To obtain unbiased observations, specimens were broken off the ribbons at random, ground

to a thickness of %50µm and tLinned for TEN examination by ion beam milling. Subsequent

investigations were carried out in a Siemens Elmiskop 102 operating at an accelerating

voltage of 125 kv (conventional TEN, CTEM).

-I-

is



-2-	 .

To correlate electrical and structural properties of defects, areas were

selected and mapped out in ERIC. Specimens 3mm in diameter were then cut out

from the ribbon and ion-milled from the back-side (with the Schottky-diodes still

at the surface) until the areas of interest were contained in the electron trans-

parent regions. These specimens were subsequently examined in a high-voltage

electron microscope (HM) operating at an accelerating voltage of 1MV. HM has

the following advantages over CTEM because of the high penetration power of highly

accelerated electrons (several Um as compered to 0.5pa in CTEM):

(i) The probability of finding the defects, previously mapped by ERIC,

in the large transmittable area is high.

(ii) Extended defects such as twin or other grain boundaries can easily be

traced over long distances.

(iii) The volumes investigated by EVEN and by EBIC are comparable.

Difficulties arise when comparing ERIC and HV3M micrographs because of the large

difference in working magnifications (SEM-EBIC typically 1,000x, HVEM typically 10,000x).

The comparison is facilitated by utilizing permanent surface marks, such as scratches,

or etched topological features. In addition a series of low magnification ERIC micro-

graphs (10x, 50x, 200x) helps to locate the areas of interest.

A brief discussion of the advantages of the present technique for the electrical

characterization of defects, may be found in /6/.

3. INVESTIGATED EFG RIBBONS

The ribbons investigated in the present study are briefly described below:

1) JPL identification #5-871 run 18-112-1, 'small grain'. Displaced die,

growth speed 3.0-3. 4 cm/min. Undoped.

2) JPL identification #5-866 run 16-163, 'small grain'. Displaced bulbous

ended die, growth speed 3.1 cm/min. Boron doped, resistivity lncm.

3) JPL identification #5-1158. 'Large grain'. (reduced AT flow).

4) Mobil Tyco supplied... 'large grain' ribbon. ('reduced AT flow).

4. CHARACTERISTIC DEFECT STRUCTURE OF MFG SILICON RIBBONS

4.1. Etch
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Similar features were observed in all of the VO ribbons examined, the only

difference being the scale of the defeats (e.g. 'large' and 'small' grain).. Figs. 1(a)

W (b) show typical etch patterns, which haw already been described (e.g. /T/to/10/).

Only a brief description will therefore be given here, with emphasis on features which

are interesting in connection with the correlation work reported in Section 5.

On a large scale the observed pattern is generally inhomogeneous, on a small

scale, however, frequently homogeneous. Figure 1(a) shows an area of parallel stri-

ations, which are generally attributed to the presence of twin boundaries. (see

Section 5 for a detailed discu"ion). At the top of Figure 1(a) is a region contain-

ing a high density of dislocation etc,.^.its. It should be noted that the density of

dislocations varies appreciably from region to region. Whereas Figure 1(a) represents

the 'standare l defect structure (i.e. equilibrium structure', e.r. /11/) which is

frequently discussed, Figure 1(b) shows an example of a more complicated pattern.

Areas such as this were found on all of the ribbons and covered appreciable areas of

the surface. The irregularity in Figure 1(b) is caused by reactions between grain

and/or twin boundaries and by an inhomogeneous distribution of dislocations. In

several regions the dislocation etch pits are aligned along crystallographic directions

suggesting that the dislocations had been generated by plastic processes (See Section 5).

The orientation of the grains at the surface varies; in order of falling frequency

{110}, {112}	 have been found, in partial agreement with earlier work /12,13/.

An example of the variation in grain orientation is shown in Figure 2. Orientations

are given with respect to the growth direction.

4.2. ERIC

Figure 3 is a low magnification ESIC micrograph shcwing the distribution of elec-

trically active defects. In the upper part of the micro-Xaph contrast lines apparently

due to grain boundaries are visible. In addition black dots due to active dislocations

are randomly distributed throughout the matrix. (Figure 4 is a higher magnification

micrograph of the area described above.) Most of Figure 3 consists of almost hori-

zontally aligned boundaries, some of these very dark (showing strong electrical

activity), some weak in contrast or exhibiting 'dotted' contrast. Figure 5 shows an-



other example of dotted ESIC contrast where the effect is more pronommced. We will

show in Section 5 that this pattern is related to the twinned structure of the material.

Such a relationship was earlier inferred from compar'son of etched surfaces and ERIC

micrographs /3/ and by independent observations of twins in TEN /10/. An exact anal-

ysis, however, requires direct correlation between ERIC and TEN, as presented in

Section 3.

4.3. TEN

Twins with a (111) habit plane occur with a high frequency and are therefore

generally observed by TEM. A typical twinned structure is shown in Figure 6. The

thicknesses of micro-twins may vary from a few layers of (111) planes up to tens of

microns (which of course means single twin boundaries are observed in TEM). A micro-

twin five layers thick is revealed by structural imaging in Figure 7. The 'small

grain' ribbons contain a high density of microtwins (e.g. Figure 6) with thicknesses

up to several 100 nm. 'Large grain' material contains isolated twin boundaries spaced

several = apart, resulting in a more proportionate distribution of 'twinned' and

'matrix' material.

Twin boundaries may contain partial dislocations (twin boundary dislocations) the

density of which can vary from boundary to boundary. No relationship between twin

boundary dislocation density and ribbon type has been found.

4.4. Results concerning the carbon content

Graphite dies are used in EFG ribbon growth. Tvo consequences

result from this technique: (i) SiC - particles are present at the ribbon surface

(e.g. /3/) and (ii) a high density of carbon (ti1018 - 101 c 
m-3 

/14/) is incorporated

into the silicon material.

ESIC has been used to investigate the electrical activity of the defect structure
E

nucleated at SiC particles. Figure 8 shows a typical arrangement with a high density

of black dots, corresponding to dislocations, and a number of twin boundaries. Ex-

cept for this high density of defects no other unusual effects were observed. This
r.

is particularly interesting since an excess of carbon may be expected near a SiC

particle, thereby enhancing any carbon-induced impurity segregation. Such a segre-

G.
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gation is expected to cause increased minority carrier recombination. However, in

the present study, the electrical activities or the defect structure near SiC particles,

and of the %quilibrium structure' are not noticeably different.

Recently a ribbon growth model was proposed to account for carbon concentrations

above the solubility limit /15/. The model asaimaes eutectic growth and directional

solidification of the ribbon, which leads to lamellae of a silicon-carbon 'phase'

embedded in a carbon rich RIlicon matrix. Such a structure should give rise to

special contrast effects In TAM. If the silicon-carbon phase is not coherent with

the silicon matrix, which is likely due to the difference in the bond lengthsof silicon

and carbon atoms, strain contrast effects should be observed, at least at irregular-

ities of the lamellae. Moreover, interference patterns, e.g. Moirf fringes, and/or,

in the case of a long range order, diffraction effects would be expected. Pone of

these effects has been observed in this study.

5. CORRELATION OF ESIC WITH HVFIy! OBSERVATIONS

Figure 9(c) shows part of an ERIC micrograph exhibiting a row of dots similar

to those seen in Figure 3. Figure 9 (a) is a HVEM micrograph of the same area. A

comparison of Figure 9 (a) and (c) confirms that the data mark the trace o; a micro-

twin approximately 200 am thick, the boundaries of which are visible in fringe

,ontrest. This microtwin is imaged in Figure 9 (b) with its boundaries invisible,

revealing that partial dislocations are contained in both boundaries. A comparison

of EBIC and HVEM micrographs shows a one to one correspondence between dots and

dislocations. Ignoring the central spot for the moment, the ERIC dots have similar

contrast and correspond to individual, slightly curved dislocations. Diffraction

contrast analysis reveals that the dislocations differ in Burgers vector (of type 1/6

<112>), and that their character is not of simple 30 0 or 900 type. These observations

suggest that the dislocations are comparably effective sites for the recombination of

minority carriers, irrespective of their crystallogra phic character. The central dot

in Figure 9 (c) arises from the cc•abined effect of a group of 3 partial dislocations

which are too closely spaced to be resolved by ERIC. (%1-21m).
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Figure 10 (a) shown another example of dots in BBIC contrast. These dots,

though similar to those shown in Figure 9 (c) are caused by a totally different

structure. Figure 10 (b) is an etch pattern from the some area, shoving that the

observed contrast in Figure 10 (a) is due to the interaction of boundaries. The

nature of the boundaries was determined by WM. As an example the area encircled

in Figure 10 is shown in Figure U. A three dimensional sketch of this area

clarifying the relationships between the different areas is given in Figure 12.

Analysis shows that T1 is a microtwin til00mm thick, lying in the matrix M perpen-

dicular to the grovti surface. T2 is in a different twin orientation to the matrix

M with an inclined (111) - habit plane. Thus the boundary between T 1 and T2 Joins two

crystal grains with a misori-entation caused by two non-parallel twinning operations.

The geometric construction is depicted in Figure 13, projected along the <110> di-

rection common to all three grains. Boundaries of this type have been termed 'second

order tvin joins' by Kohn /16/ and are E9 boundaries in the CSL model /17/. In the

pressut case the {111) plane of T1 matches a {115) plane of T 2 . This unsymmetric

configuration has been modelled by Kohn /18/, yet has not been observed so far to

the author's knowledge. The dislocation model discussed by Hornstra /19/ could

also be extended to describe this unsymmetric case, but would require a very high

density such that the dislocation core regiora vould overlap. In Figure 11 (b) the

specimen was tilted to show the boundaries of the microtvin T1 . Dislocations that

are contained in the {111)/{115) boundary are clearly visible. These dislocations

accommodate a small deviation from the {111)/{115) orientation relationship and art

commonly referred to as extrinsic boundary dislocations/20/. The Burgers vectors of

these dislocations have not been analyzed.

Figure 14 shows a contrast experiment to determine the character of the partial

dislocations present in the boundaries T2/M. The specimen was tilted until these

boundaries were almost perpendicular to the incident electron beam, alloving an easy

determination of the crystallographic direction of the straight dislocation lines.

The Burgers vectors were found from standard contrast analysis /21/. The dislocations



_T_

analysed were Shockley partials of either 300 or 900 type, examples are indicated

in Figure 14 (c).

The comparison c;± the EM micrographs (Figures 11 and 14) with the corresponding

EBIC pattern (Figure 10) gives the following result: (1) The black dots in Figure 10

(a) correspond to the (111)/(115) second order twin loins, which therefore represent

efficient sites for minority carrier recombination. (ii; The straight 30° and 90°

partial dislocations stow no contrast in ESIC (although etched in Figure 10 (?:)) and

thus are virtually electrically inactive.

6. DISCUSSION

In recent years a large number of experimental results on the dislocation core

structure in tetrahedrally co-?rdinated semiconductors has appeared (e.g. /22/).

High resolution electron microscopy has revealed the presence of dissociates and

constricted perfect dislocations (e.g. /23, 24/). Dislocations introduced by plastic

processes are generally dissociated /22/ and are, since dissociation is difficult to

envisage on the shuffle-set, therefore assigned to the glide set (e.g. /22/). Indications

for the existence of "shuffle set" dislocations /25/ in Go, suggest that such dislo-

cations also may exist in Si. Transf,)rmation from one set to the other can occur by

the addition or removal of revs of point defects /26/; txperimentsl evidence for such

a proce;,s exists (e.g. /24/).

Theoretical models for dislocation core structures were first developed by Hornstra

/27/, and these models have been extended and refined to include bond reconstruction

(e.g. /23/). The electrical properties of dislocations with different core structures

are likely to be different.

Experimental results obtained by combining ESIC with HYTEM will contribute to the

discussion of these various models.

6.1. Dislocations at coherent tvin boundaries

In the present investigations dislocations were observed with apparently tvo different

levels of electrical activity: dislocations giving rise to an F.HIC contrast, Figure

9 (c), and dislocations with no, or at least considerably lover electrical activity,

Figure 11. Confirmation of these observations is required before a detailed inter-



pretation of the nature of dislocations can be presented. It is however interesting

to speculate about the possible significance of the present results, with regard to

the formation and core structures of dislocations.

The simplest approach to correlating crystallographic and electrical properties

is to reduce the number of applicable models. To this end the present irvestigation

is concerned with siatle dal dislocations and therefore the question of whether

the dislocation is dissociated or constricted (as present with perfect dislocations)

does not arise.

It is conceivable that the core structure of a dislocation will depend on how

the dislocation is generated. The present observations, that the electrically

active dislocations do not follow <110> directions, and are in fact sometimes curved,

and that the non-active dislocations are aligned along a <110> Pe'ierls valley, tends

to support this view. During growth of EFG ribbons there are two temperature ranges

in which dislocation generation processes may occur. During solidification, when

diffusion can occur, twin boundaries grow and can accomodate partial dislocations by

atomic steps in the boundaries. At lover temperatures thermal stresses are relieved

by plastic processes and these dislocations can react with twin boundaries,in which

case the lattice dislocatiorsdissociate into twin-boundary partial dislocations. Dif-

fusic.:: plays only a minor role in this case. Whether a distinction between growo- in

and deformation induced dislocations is possible and what type of dislocations are

formed by each process has yet to be determined.

6.2. The (111) {115} second order twiu Join

The present study has shown that the detected {111) {115} second order twin loin

is strongly electrically active. Since extrinsic dislocations are contained in the

investigated boundary it cannot be explicitly stated that the electrical activity is

an intrinsic property of the boundary. However considering the complicated arrange-

ment of atoms and bonds at the boundary (e.g. Figure 13) it is likely that the extrin-

sic dislocations have only an additional effect, if at all, on the electrical activity.

Since the second order twin loin is confined to the {111} matrix planes it is of
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considerable : nterest in the discussion of the so-called equilibriur. structure /I]./

of M (and comparably grown) ribbops. This structure has been identified from etei

investigations to be generally present in VO ribbons and to consist of parallel

coherent twin boundaries which extend on (111)macrix planes along the growth direction.

Consequently, once a second order twin join is fond on a (111) matrix plane it can

extend over long distances parallel to the equilibrium structure without further

reactions. Second order twin loin therefore have to be regarded as an inherent part

of the defect structure of IN ribbons. Thus the equilibrium structure consists of

a large number of electrically inactive coherent twin boundaries intezmingled with

electrically active second (or even higher) order twin loins. This conclusion is

consistent with thus far unexplained ERIC observations (e.g. /3, 10/, that only some

of the linear boundaries revealed by etching are electrically active.

6.3. CARBON DISTRIBUTION IN EFG-RIBBONS

It has been found that the grain size of EFG ribbons generally decreases with

increasing (overall) carbon concentration /15/. Since this concentration is beyond

the carbon solubility limit in silicon the distribution of C has to be considered. The

present experiments givky no indication for a lamellae two-phase structure as suggested

in the eutectic growth model /15/. The TER observation of (115} (112) second order

twin loins suggests the possibility that the carbon is preferentially incorporated

into such loins, as well as into higher order twin and other grain boundaries.

This explanation seems reasonable since the atomic arrangement at these boundaries is

considerably disturbed (independent of the model used to describe the loins) thereby

allowing the incorporation of a high density of carbon atoms. The correlation-higher

carbon concentration smaller grain size is natural in this context since decreasing

grain size increases the possibility of twin boundary interactions. Row an intentional

increase in the concentration of incorporated carbon atoms (`y changing the grovth condi-

tions of the EFG ribbon) causes more boundaries to form, and how the carbon &torso Lzflu-

ence the electrical activity of the higher order twin Joins are topics of future research.
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CONCLUSIONS

1. The correlation of NVM and BBIC is a valuable tool for the investigation of

the defect structure cf semiconducting uterials. e.g. VG ribbons.

2. The existence of the (115) {M} second order twin loin has been proven for the

first time. It may occur relatively frequently in the ribbon due to twin boundary

interactions and lies along tte same direction as the first order twin boundaries.

3. The (115) {111} twin loins were observed to be electrically active, whereas

coherent (111) (111) twin boundaries were inactive.

L. Partial dislocations at coherent twin boundary can be electrically active. No

microprecipitates were observed at these dislocations suggesting that the electrical

activity is not impurity controlled but a consequence of the dislocation core

structure per se.

5. It is suggested that the carbon atoms present in EFC ribbons in high co-n(!entrations

are preferentially iAsorbed to the higher order twin loins.
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FIGURE CAPTIONS

Optical micrographs of etched ribbon surface Ribbon M2.

Optical micrograph of ribbon surface showing variation in grain orientations.
Open circles mark areas analyzed by Laue X-ray and also orientations with
respect to standard 001 stereographic projection (Courtesy of F. Stafford).

3. EBIC micrograph of typical EFG structure. Ribbon N2.

4. Higher magnification ERIC micrograph of area at top right of Figure 3.

5. EBIC micrograph showing dotted contrast along linear boundaries. Ribbon M3.

6. TEM micrograph (125 kv) of microtwins in E.F.G. ribbon. Ribbon N1.

7. High resolution structural image of a microtwin five atomic layers thick.
(125 kv).

8. ERIC micrograph showing contrast near a SiC particle. Ribbon A.

9. a) Bright field HVEM image of a microtwin containing dislocations. b) Same
area with twin out of contrast. c) EBIC micrograph from the same area. g
diffraction vector - Ribbon M4.

10. a) EBIC micrograph showing dotted contrast. b) Optical micrograph of the
same area showing interaction of microtwins. Ribbon N2.

11. a) Bright fiel-' HVEM micrograph of twin boundaries shown in Figure 10.
b) Same area troth one set of twin boundaries out of contrast.

12. Schematic sketch of the arrangement of twin boundaries shown in Figure 11.

13. Projection along the common <110> direction of twins indicated in Figure 12
showing the arrangement of atoms at the (111) (115) twin join.

14. HVEM micrographs of the same area as Figure 11. These were used to determine
the nature of the dislocations in the twin boundaries, examples of which are
marked in c).
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