NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DEAFECT STRUCTURE OF EFG SILICON RIBBON

December 1980

JPL Contract No. 954852

The JPL low-cost solar array project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.

[^0]| (NASA-CR-164324) | | | | N81-236 |
| :---: | :---: | :---: | :---: | :---: |
| SILICON | BIBBON (Cornell | Univ.. Ithaca, M. | | |
| Y.) 26 | p $\mathrm{HC} \mathrm{A03/aF} 401$ | CSCL 10A | | |
| | | | G3/44 | $\begin{aligned} & \text { Unclas } \\ & 42377 \end{aligned}$ |

DEFECT STRUCTURE OF EFG SILICON RIBBON

by

H.Strunk ${ }^{\dagger}$, B. Cunninghem and D. Ast
Materials Science and manineering Bard Hall, Cornell University Ithaca, New York 14853

ABSTRACT

The defect structure of EFG ribbons has been studied using. EBIC, TEM and HVEM. By imaging the same areas in EBIC and HVEM a direct correlation between the crystallographic nature of defects and their electrical properties has been obtained. (i) Partial dislocations at coherent twin boundaries may or may not be electrically active. Since no microprecipitates were observed at these dislocations it is likely that the different electrical activity is a consequence of the different dislocation core structures. (ii) 2nd order twin joins were observed which followed the same direction as the coherent first order twins normally associated with $\mathfrak{k F G}$ ribbons. These 2nd order twin joins are in all cases strongly electrically active.

EFG ribbons contain high concentrations of carbon. Since no evidence of precipitation was found with TTM it is suggested that the carbon may be incorporated into the higher order trin boundaries now known to exist in EFG ribbons.

[^1]
1. IWIRODUCTION

Rapid progress has recently been made in the production process of edge defined film-fed grovth (EFG) silicon /1/. EFG ribbon is a promiaing materisl for the production of inexpensive solar cells and therefore an understanding of the relationship between the crystallographic nature of the defects and their electrical properties is desirable. This information can then hoperully be used to modify the ribbon growth process to reduce the density of defects which decrease the efficiencies of solar cells.

After a sumnary of the characteristic defect structure of various EFG silicon ribbons, results are presented which were obtained by correlating BBIC measurements and HVEM observations on selected defects.

2. EXPERTMENTAL TECERIQUES

The electrical properties (i.e. enhanced minority carrier recombination) were investigated in the scanning electron microscope (SEM) operated in the electron beaminduced current (EBIC) mode. Schottky diodes were produced by evaporating a thin film of $\mathrm{A}(\sim 500 \AA$) onto one surface $/ 2 /$. BBIC images exhibit dark contrast at defects which act as recombination sites for minority carriers, with an EBIC resolution of $\sim 1-2 \mu m$. The EBIC technique can be extended to obtain quantitative information. The collected current can be measured as a function of specimen co-ordinates allowing the determination of 'recombination efficiencies' of specific defects $/ 3 /$, minority carrier lifetime /4/ and trap level measurements /5/ are possible using high speed beam blanking techniques. These extensions of the BBIC technique are currently being introduced.

Defect structures were !nvestigated by transmission electron microscopy (TEM). To obtain unbiased observatior.s, specimens were broken off the ribbons at random, ground to a thickness of $\sim 50 \mathrm{~m}$ and tilinned for TMM examination by ion beam milling. Subsequent investigations were carried out in a Siemens Elmiskop 102 operating at an accelerating voltage of 125 kv (conventional TEM, CTEM).

To correlate electrical and structurel properties of defects, areas mere selected and mapped out in BBIC. Specimens 3 mm in dianeter vere then cut out from the ribbon and ion-milled from the back-aide (with the Schottky-diodes still at the surface) until the areas of interest vere contained in the electron trensparent regions. These apecimens were subsequently examined in high-voltage electron microscope (HVEM) operating at an accelerating voltage of IMV. RVEM has the following advantages over CIEM because of the high penetration power of highly accelerated electrons (several mes compared to 0.5 m in CTMM):
(i) The probability of finding the defects, previously mapped by EBIC, in the large transmittable area is high.
(1i) Extended defects such as twin or other grain boundaries can easily be traced over long distances.
(iii) The volumes investigated by HVEM and by BBIC are comparable.

Difficulties arise when comparing EBIC and RV5N micrographs because of the large difference in working magnifications (SEM-BBIC typically $1,000 x$, HVEM typically $10,000 x$). The comparison is facilitated by utilizing permanent surface marks, such as scratches, or etched topological features. In addition a series of low magnification EBIC micrographs (10x, $50 x, 260 x$) helps to locate the areas of interest.

A brief discussion of the advantages of the present technique for the electrical characterization of defects, may be found in $/ 6 /$.
3. INVESTIGATED EFG RIBBORS

The ribhons investigated in the present study are briefly described below:

1) JPL identification ${ }^{\prime \prime}-871$ run 18-112-1, 'gall grain'. Displaced die, growth speed 3.0-3.4 cm/min. Undoped.
2) JPL identification "5-866 run 16-163, 'small grain'. Displaced bulbous ended die, growth speed $3.1 \mathrm{~m} / \mathrm{min}$. Boron doped, resistivity $1 \Omega \mathrm{~cm}$.
3) JPL identification \#5-1158. 'Large grain'. (reduced AT Now).
4) Nobil Tyco supplied...'large grain' ribbon. (reduced AT flow).

4. CHARACTERISTIC DEFECS STRUCTURE OF EFG SILICON RIBBONS

4.1. Etch

Similar features vere observed in ell of the EFG ribbons axamined, the only difference being the scale of the defecta (e.g. 'lerge' and 'small' grain)., Figs. $1(a)$ and (b) show typical etch patterns, which have elready been described (e.g. /7/to/10/). Only a brief description will therefore be given here, with aphasis on features wich are interesting in connection with the correlation work reported in Section 5.

On a large scale the observed pattern is generally inhomogeneous, on a mall scale, hovever, frequently homogeneous. Figure $1(a)$ shows an area of parallel striations, which are generally attributed to the presence of twin boundaries. (see Section 5 for a detailed discuasion). At the top of Figure $l(a)$ is a region containing a high density of dislocation ete: rits. It should be noted that the density of dislocations varies appreciably from region to region. Whereas Figure 1 (a) represents the 'standari' defect structure (i.e. equilibrium structure', e.p. /11/) which is frequentiy discussed, Figure $1(b)$ shows an example of a more complicated pattern. Areas such as this were found on all of the ribbons and covered appreciable areas of the surface. The irregularity in Figure $1(b)$ is caused by reactions between grain and/or twin boundaries and by an inhomogeneous distribution of dislocations. In several regions the dislocation etch pits are aligned along crystallographic directions suggesting that the dislocations had been generated by plastic processes (See Section 5).

The orientation of the grains at the surface varies; in order of falling frequency $\{110\}$, $\{112\}$ have been found, in partial agreement with earlier work $/ 12,13 /$. An example of the variation in grain orientation is shown in Figure 2. Orientations are given with respect to the growth direction.
4.2. BBIC

Figure 3 is a low magnification BBIC micrograph shcwing the distribution of electrically active defects. In the upper part of the microrraph contrast lines apparently due to grain boundaries are visible. In addition black dots due to active dislocations are randomly distributed throughout the matrix. [Figure 4 is a higher magnification micrograph of the area described above.] Most of Figure 3 consists of almost horizontally aligned boundaries, some of these very dark (showing strong electrical activity), some weak in contrast or exhibiting 'dotted' contrast. Figure 5 shows an-

Other example of dotted BBIC contrast where the effect is more pronounced. We will show in Section 5 that this pattern is related to the twinned structure of the material. Such a relationship was earlier inferred from comparison of etched surfaces and EBIC micrographs /3/ and by independent observations of twins in TIM /10/. An exact analysis, however, requires direct correlation between MBIC and TEM, as presented in Section 5.
4.3. TEM

Twins with a \{111\} habit plane occur with a high frequency and are therefore generally observed by TEM. A typical twinned structure is shown in Figure 6. The thicknesses of micro-twins may vary from a few layers of \{111\} planes up to tens of microns (which of course means single twin boundaries are observed in TEM). A microtwin five layers thick is revealed by structural imaging in Figure 7. The 'smail grain' ribbons contain a high density of microtwins (e.g. Figure 6) with thichesses up to several 100 mm . 'Large grain' material contains isolated twin boundaries spaced several $\mu \mathrm{m}$ apart, resulting in a more proportionate distribution of 'twinned' and 'matrix' material.

Twin boundaries may contain partial dislocations (twin boundary dislocations) the density of which can vary from boundary to boundary. No relationship between twin boundary dislocation density and ribbon type has been found.
4.4. Results concerning the carbon content

Graphite dies are used in EFG ribbon growth. Tro consequences result, from this technique: (i) SiC - partivies are present at the ribbon surface (e.g. $/ 3 /$) and (ii) a high density of carbon ($\sim 10^{18}-10^{-9} \mathrm{~cm}^{-3} / 14 /$) is incorporated into the silicon material.

EBIC has been used to investigate the electrical activity of the defect structure nucleated at SiC particles. Figure 8 shows a typical arrangement with a high density of black dots, corresponding to dislocations, and a number of twin boundaries. Except for this high density of defects no other unusual effects were observed. This is particularly interesting since an excess of carbon may be expected near a SiC particle, thereby enhancing any carbon-induced impurity segregation. Such a segre-
gation is expected to cause increased ainority carrior recombination. Eoverer, in the present study, the electrical activities of the defect structure near sic particles, and of the equilibrivi structure' are not noticeably differeat.

Recently a ribbon crowth model was proposed to account for carbon concentrations above the solubility $11 \mathrm{mit} / 15 /$. The model assumes eutectic growth and directional solldification of the ribbon, which leads to lamellae of a ailicon-carbon 'phase' mbedded in a carbon rich ilinicon matrix. Such a atructure should give rise to apecial contrast effects in TIA. If the allicon-cerbon phase is not coherent with the silicon metrix, which is likely due to the difference in the bond lengthsof silicon and carbon atams, atrain contrast effecta should be observed, at least at irregularities of the lamellae. Moreover, interference patterns, e.g. Moire fringes, and/or, in the case of a long range order, diffraction effects would be expected. None of these effects has been observed in this study.

5. CORRETATION OF BBIC WITH RNPM OBSERVATIONS

Figure $9(c)$ shows part of an EBIC micrograph exhibiting a row of dots similar to those seen in Figure 3. Figure 9 (a) is a HVEM micrograph of the same area. A comparison of Figure $9(a)$ and (c) confirms that the dots mark the trace 0 a microtwin approximately 200 nm thick, the boundaries of wich are visible in fringe contrast. This microtwin is imaged in Figure $9(b)$ with its boundaries invisible, revealing that partial dislocations are contained in both boundaries. A comparison of BBIC and FVEM micrographe shows a one to one correspondence between dots and dislocations. Ignoring the central spot for the moment, the EBIC dots have similar contrast and correspond to individual, slightly curved dislocations. Diffraction contrast andysis reveals tant the dislocations differ in Burgers vector (of type $1 / 6$ <112>), and that their character is not of simple 30° or 90° type. These observations suggest that the dislocations are comparably effective sites for the recombination of minority carriers, irrespective of their crystallogramic character. The central dot in Figure 9 (c) arises from the ec.bined effect of a group of 3 partial dislocations which are too closely spaced to be resolved by EBIC. (~I-2um).

Figure 10 (a) shovs another example of dots in EBIC contrast. These dots, though similar to those shown in Figure $9(c)$ are caused by a totaliy different structure. Figure 10 (b) is an etch pattern from the same area, showing that the observed contrast in Figure 10 (a) is due to the interaction of boundaries. The nature of the boundaries vas determined by GVEM. As an example the area ancircied in Figure 10 is shown in Figure 11. A three dimensional sketch of this area clarifying the relationships betveen the different areas is given in Figure 12. Analysis shows that T_{1} is a microtwin ~ 100 mill thick, lying in the matrix M perpendicular to the growti surface. T_{2} is in a different twin orientation to the matrix M with an inclined \{1il\} - habit plane. Thus the boundary between T_{1} and T_{2} joins two crystal grains with a misoriantation caused by two non-parallel twinning operations. The geometric construction is depicted in Figure B, projected along the <ll0> direction common to all three grains. Boundaries of this type have been termed 'second order tuin joins' by Kohn $/ 16 /$ and are $[9$ boundaries in the CSL model / $17 /$. In the present case the \{111\} plane of T_{1} matches a \{115\} plane of T_{2}. This unsymetric configuration has been modelled by Kohn $/ 18 /$, yet has not been observed so far to the author's knowledge. The dislocation model discussed by hornstra /19/ could also be extended to describe this unsymmetric case, but would require a very high density such that the dislocation core regioss would overlap. In Figure 11 (b) the specimen was tilted to show the boundaries of the microtwin T_{1}. Dislocations that are contained in the $\{111\} /\{115\}$ boundary are slearly visible. These dislocations accomodate a small deviation from the $\{111\} /\{115\}$ orientation relationship and ar: commonly referred to as extrinsic boundary dislocations/20/. The Burgers vectors of these dislocations have not been analyzed.

Figure 14 shows a contrast experiment to determine the character of the partial dislocations present in the boundaries T_{2} / M. The specimen was tilted until these boundaries were almost perpendicular to the incident electron beam alloving an easy determination of the c:-ystallographic direction of the straight dislocation lines. The Burgers vectors vere found from standard contrast analysis /21/. The dislocations
analysed were Shockley partials of either 30° or 90° type，exaples are indicated in Figure 14 （c）．

The comparison ci：the EVEM micrographs（Ficures 11 and i4）with the corresponding mic pattern（Figure 10）cives the following result：（i）The black dots in Figure 10 （a）correspond to the $\{111\} /\{115\}$ second order twin joins，which therefore represent efficient sites for minority carrier recombination．（is）The otraight 30° and 90° partial Aislocations show no contrant in MBIC（although otched in Fifure 10 （b））and thus are virtually electrically inactive．

6．DIscussion

In recent years a large number of experimental results on the dislocation core structure in tetrabedrally co－rdinated semiconductors has appeared（e．g．／22／）． High resolution electron microscopy has revealed the presence of dissociater and constricted perfect dislocations（e．g．／23，24／）．Dislocations introduced by plastic processes are generally dissociated／ 22 ／and are，since dissociation is difficult to envisage on the shuffle－set，therefore assigned to the glide set（e．g．／22／）．Indications for the axistence of＂shuffie set＂dislocations／25／in $G e$ ，susgest that such dislo－ cations alzo may exist in Si．Transformation from one set to the other can occur by the addition or removal of rcws of point defects／26／；experimental evidence for such a process exists（e．g．／24／）．

Theoretical models for dislocation core structures were first developed by Hornstra $/ 27 /$ ，and these models have been extended and refined to include band reconstruction （e．8．／23／）．The electrical properties of dislocations with different core structures are likely to be different．

Experimental results obtained by combining EBIC with $⿴ 囗 十 ⺝ 丶 T E M$ will contribute to the discussion of these various models．

6．1．Dislocations at coherent twin boundaries

In the present investigations dislocations were observed with apparentiy two different levels of electrical activity：dislocations giving rise to an EBIC contrast，Figure $9(c)$ ，and dislocations with no，or at least considerably lover electrical activity， Figure 11．Confirmation of these observations is required before a detailed inter－
pretation of the nature of dislocations can be presented. It is bovever interestine to speculate about the possible significance of the present recults, with regard to the formation and core structuces of dislocations.

The simplest approech to correlating crystallographic and slectricel properties is to reduce the aumber of appilcable models. To this end the preceat invertigation Is concerned with single partiol dislocations and therefore the question of whether the dislocation is dissociated or constricted (as present with perfect disiocations) does not erise.

It is conceivable that the core structure of dislocation will depend on how the dislocation is generated. The present observations, that the electrically active dislocations do not follov <ll 0\rangle directions, and are in fact sometimes curved, and that the non-active dislocations are aliged along a <110> Peierls valley, tends to support this view. During growth of EFG ribbons there are two temperature ranges in which dislocation generation processes may occur. During solidification, when diffusion can occur, trin boundaries grow and can accomodate partial dislocations by atomic steps in the boundaries. At lover temperatures thermal stresses are relieved by plastic processes and these dislocations can react with twin boundaries, in which case the lattice dislocations dissociate into twin-boundary partial disiocations. Diffusic. plays only a minor role in this case. Whether a distinction between grown in and deformation induced dislocations is possible and what type of dislocations are formed by each process has yet to be determined.
6.2. The $\{111\}\{215\}$ second order twin join

The present study has shown that the detected \{111\} \{115\} second o:jer twin foin is stronsly electricelly active. Since extrinsic dislocations are contained in the investigated boundary it cannot be explicitly stated that the electrical activity is an intrinsic property of the boundary. However considering the complicated arrangement of atoms and bonds at the boundary (e.g. Figure 13) it is likely that the extrinsic dislocations have only an additional effect, if at al, on the electrical activity. Since the second order twin join is confined to the \{111\} matrix planes it is of
considerable : interest in the discunsion of the socelled equilibrive structure / $11 . /$ of EFC (and comparably crown) ribbops. This atructure bas been identisied srce etc a investigations to be cenerally present in EFC ribbons and to conaist of parallel coherent twin boundaries which extend on \{1il\} marrix plases along the grovth direction. Consequontiy, once a second order twin join is formed an \{ \{1il\} matrix plase it can extend over lons distances parallel to the equilibrium structure without further reactions. Second order twin join therefore have to be regarded ae an inherent part of the defect structure of EFC ribbons. Thus the equilibrive structure coasists of a large number of electricaliy inactive coherent trin boundariea intermingled with electricelly active second (or even higher) order twin joins. This conclusion is consistent with thus far unexplained EBIC observations (e.g. $/ 3,10 /$, that oniy some of the lincar boundaries revealed by etching are electrically active.

6.3. CARBON DISTRIBUTION IN EFG-RIBBONS

It has been found that the crain size of EFG ribbons generally decreases with increasing (overall) carbon concentration /15/. Since this concentration is beyond the carbon solubiiity limit in silicon the distribution of C has to be considered. The present experiments give no indication for a lameliae two-phase structure as auggested in the eutectic growth model /15/. The TTM observation of \{115\} (111\} second order twin joins sugseats the possibility that the carbon is preferentially incorporated into such joins, as well as into higher order twin and other grain boundaries.

This explanation seems reasonable since the atomic arrangement at these boundaries is considerably disturbed (independent of the model used to describe the joins) thereby allowing the incorporation of a hich density of carbon atoms. The correlation-higher carbon concentration smaller grain size is natural in this context since decreasing crain size increases the possibility of twin boundary interactions. How an intentional increase in the concentration of incorporated carbon atoms ('y changing the growth conditions of the EFG ribbon) causes more boundaries to form, and how the carbon atoras influence the elect rical activity of the higher order twin joins are topics of future research.

- comclusions

1. The correlation of EVIEM and EBIC is a valuable tool for the investigation of the defect etructure of semiconductivg materiels, e.e. ErC ribbons.
2. The existence of the \{115\} \{112\} second order twin join has heen proven for the first tine. It may occur relatively frequentily in the ribbon due to twin boundary Interactions and lies along tre ame direction as the first order twin boundaries.
3. The $\{115\}\{111\}$ twin joins were observed to be electrically active, whereas coherent \{111; \{111\} twin boundaries were inactive.
4. Partial disiocations at coherent twin boundary can be electrically active. No microprecipitates were observed at these dislocations sugesting that the electrical activity is not impurity controlled bit a consequence of the dislocation core structure per se.
5. It is suggested that the carbon atoms present in EFG ribbons in high concentrations are preferentially udsorbed to the higher order twin joins.

Rumpancms

1. J.P. Koleje, B.E. Mackintonh and T. Surek, J. Gryet. Orowth, 20 17) (1980).
2. T. Sulitran and D.G. Ant, J.P.L. Technicai Report, 3 Contract wo. 954852 (1979).
3. J.8. Tanoka, 801nr Ce11s, 2, 123 (1979).
4. D.E. Toanor, J. Appl. Fhys. D: Appl. Faye. 13, 612 (1980).
5. L.C. Kimerlizs and J.R. Patel, Appl. Phys. Uatt. 34, 73 (2979).
6. 8. Etrunk and D.G. Ae\%, Froc. 38th ESA, 38 323, (1980).
T. I. Fotil and D.G. Ast. J.P.I. Technical Report (11 Cantract No. 954852 (1978).
1. C.V.E.F. Pno, M.C. Cratella, F.Y. Walk and K.V. Ravi, J. Cryst. Crovth 50, 311 (1980).
2. C.V. Bari Rao, H, E. Bates and K.V. Ravi, J. Appi. Phyy., 47, 2614 (2976).
3. K. Yang, G.H. Schurthe and T.F. Cf zzek, J. Cryst. Growth 50, 302 (1980)
4. K.V. Ravi, J. iryst. Growth, 39, 1 (1977).
5. G.B. Schmuttke, T.F. Ciszek and A. Kran, J.P.L. Technical Report \#3, Contract Ho. 954244 (March 2976).
6. L.C. Garone, ‥V. Hari Reo, A.D. Norrison, T. Surek and K.V. Ravi, Appl. Fhys. iett. 29, 511 (:976).
7. F.V. Weld, Private commanication (1980).
8. F. Wald, Electrochemical Soc. Meeting, St. Louis, May 1980.
9. J.A. Kohn, Am. Minerai, 4I, 778 (1956).
10. W. Bollmann, Crystal Defects and Crystaline Interfaces, Springer-Verles (1970).
11. J.A. Kohn, Am. Mneral. 43. 263 (1958).
12. J. Horastre, Physica, 25, 409 (1959).
13. R.W. Balluffi, Y. Komen and T. Schoter, Surf. Sci. , 31, 68 (1972).
14. P.B. Hirsch, A. Howie, R.B. Micholson, D.W. Pashley and M.J. Whelan, Bectron Microscopy of Thin Crystele. Iondon: Buttervurth (1965).
15. Proc. Int. Symp. Dislocations in Tetrehedraliy Co-ordinated Semiconductors. J. Physique Colloq - C6, 40, (1979).
16. P.B. Hirsch, J. Microsc. 118. 3 (1980).
17. H. Alexander. J. Physique Colloq - C6, 40, 1 (1973).
18. A. Bourret and J. Dessequx, J. Fhysique Colloq-C6, 40. 7 (1979).
19. J.P. Hirth and J. Lothe, Theory of Dislocetions, McGraw Hill. Mew York (1968) pp 359-362.
20. J. Bornetre, J. Phys. Chen. 801. . 5. 129 (1958).

FIGURE CAPTIONS

1. Optical micrographs of etched ribbon surface Ribbon W2.
2. Optical micrograph of ribbon surface showing variation in grain orientations. Open circles mark areas analyzed by Laue X-ray and also orientations with respect to standard 001 stereographic projection (Courtesy of F. Stafford).
3. EBIC micrograph of typical EFG structure. Ribbon \#2.
4. Higher magnification EBIC micrograph of area at top right of Figure 3.
5. EBIC micrograph showing dotted contrast along linear boundaries. Ribbon \#3.
6. TEM micrograph (125 kv) of microtwins in E.F.G. ribbon. Ribbon \#l.
7. High resolution structural image of a microtwin five atomic layers thick. (125 kv).
8. EBIC micrograph showing contrast near a SiC particle. Ribbon W4.
9. a) Bright field $\mathrm{HVEM}_{\mathrm{M}}$ image of a microtwin containing dislocations. b) Same area with twin out of contrast. c) EBIC micrograph from the same area. $g=$ diffraction vector - Ribbon ${ }^{\text {Wi }} 4$.
10. a) EBIC micrograph showing dotted contrast. b) Optical micrograph of the same area showing interaction of microtwins. Ribbon "t.
11. a) Bright fielr HVEM micrograph of twin boundaries shown in Figure 10. b) Same area with one set of twin boundaries out of contrast.
12. Schematic sketch of the arrangement of trin boundaries show in Figure 11.
13. Projection along the common <110> direction of twins indicated in Figure 12 showing the errangement of atoms at the (111) (115) twin join.
14. HVEM micrographs of the same area as Figure 11. These were used to determine the nature of the Aislocations in the twin boundaries, examples of which are marked in c).

b cic^{2} (20,

Figure. 1

Figure. 2

Figure. 3

Figure. 4

Figure. 5

Figure. 6

Figure. 7

Figure. 8

b 5

Figure. 11

Figure. 12

Figure. 13

c

Figure. 14

[^0]: \dagger Permanent address: Max Planck Irstitut fir Metallforschung, Institut für Physik, 7000 Stuttgart 80, FRG.

[^1]: \dagger
 Permanent address: Max Planck Institut für Netallforschung, Institut für Physik, 7000 Stuttgart 80, FRG.

