415 research outputs found
Measuring the effective phonon density of states of a quantum dot
We employ detuning-dependent decay-rate measurements of a quantum dot in a
photonic-crystal cavity to study the influence of phonon dephasing in a
solid-state quantum-electrodynamics experiment. The experimental data agree
with a microscopic non-Markovian model accounting for dephasing from
longitudinal acoustic phonons, and identifies the reason for the hitherto
unexplained difference between non-resonant cavity feeding in different
nanocavities. From the comparison between experiment and theory we extract the
effective phonon density of states experienced by the quantum dot. This
quantity determines all phonon dephasing properties of the system and is found
to be described well by a theory of bulk phonons.Comment: 5 pages, 3 figures, submitte
Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity
We demonstrate a single-photon collection efficiency of from
a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon
purity of recorded above the saturation power. The high
efficiency is directly confirmed by detecting up to kilocounts per
second on a single-photon detector on another quantum dot coupled to the cavity
mode. The high collection efficiency is found to be broadband, as is explained
by detailed numerical simulations. Cavity-enhanced efficient excitation of
quantum dots is obtained through phonon-mediated excitation and under these
conditions, single-photon indistinguishability measurements reveal long
coherence times reaching ns in a weak-excitation regime. Our work
demonstrates that photonic crystals provide a very promising platform for
highly integrated generation of coherent single photons including the efficient
out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte
Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes
a promising system for the realization of single-photon transistors,
quantum-logic gates based on giant single-photon nonlinearities, and high
bit-rate deterministic single-photon sources. The key figure of merit for such
devices is the -factor, which is the probability for an emitted single
photon to be channeled into a desired waveguide mode. We report on the
experimental achievement of for a quantum dot
coupled to a photonic-crystal waveguide, corresponding to a single-emitter
cooperativity of . This constitutes a nearly ideal
photon-matter interface where the quantum dot acts effectively as a 1D
"artificial" atom, since it interacts almost exclusively with just a single
propagating optical mode. The -factor is found to be remarkably robust
to variations in position and emission wavelength of the quantum dots. Our work
demonstrates the extraordinary potential of photonic-crystal waveguides for
highly efficient single-photon generation and on-chip photon-photon
interaction
Single-photon nonlinear optics with a quantum dot in a waveguide
Strong nonlinear interactions between photons enable logic operations for
both classical and quantum-information technology. Unfortunately, nonlinear
interactions are usually feeble and therefore all-optical logic gates tend to
be inefficient. A quantum emitter deterministically coupled to a propagating
mode fundamentally changes the situation, since each photon inevitably
interacts with the emitter, and highly correlated many-photon states may be
created . Here we show that a single quantum dot in a photonic-crystal
waveguide can be utilized as a giant nonlinearity sensitive at the
single-photon level. The nonlinear response is revealed from the intensity and
quantum statistics of the scattered photons, and contains contributions from an
entangled photon-photon bound state. The quantum nonlinearity will find
immediate applications for deterministic Bell-state measurements and
single-photon transistors and paves the way to scalable waveguide-based
photonic quantum-computing architectures
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics:Paper
We present detuning-dependent spectral and decay-rate measurements to study
the difference between spectral and dynamical properties of single quantum dots
embedded in micropillar and photonic-crystal cavities. For the micropillar
cavity, the dynamics is well described by the dissipative Jaynes-Cummings
model, while systematic deviations are observed for the emission spectra. The
discrepancy for the spectra is attributed to coupling of other exciton lines to
the cavity and interference of different propagation paths towards the detector
of the fields emitted by the quantum dot. In contrast, quantitative information
about the system can readily be extracted from the dynamical measurements. In
the case of photonic crystal cavities we observe an anti crossing in the
spectra when detuning a single quantum dot through resonance, which is the
spectral signature of strong coupling. However, time-resolved measurements
reveal that the actual coupling strength is significantly smaller than
anticipated from the spectral measurements and that the quantum dot is rather
weakly coupled to the cavity. We suggest that the observed Rabi splitting is
due to cavity feeding by other quantum dots and/or multiexcition complexes
giving rise to collective emission effects.Comment: 14 pages, 5 figures, submitte
Cavity Quantum Electrodynamics with Anderson-localized Modes
A major challenge in quantum optics and quantum information technology is to
enhance the interaction between single photons and single quantum emitters.
Highly engineered optical cavities are generally implemented requiring
nanoscale fabrication precision. We demonstrate a fundamentally different
approach in which disorder is used as a resource rather than a nuisance. We
generate strongly confined Anderson-localized cavity modes by deliberately
adding disorder to photonic crystal waveguides. The emission rate of a
semiconductor quantum dot embedded in the waveguide is enhanced by a factor of
15 on resonance with the Anderson-localized mode and 94 % of the emitted
single-photons couple to the mode. Disordered photonic media thus provide an
efficient platform for quantum electrodynamics offering an approach to
inherently disorder-robust quantum information devices
Size-Dependence of the Wavefunction of Self-Assembled Quantum Dots
The radiative and non-radiative decay rates of InAs quantum dots are measured
by controlling the local density of optical states near an interface. From
time-resolved measurements we extract the oscillator strength and the quantum
efficiency and their dependence on emission energy. From our results and a
theoretical model we determine the striking dependence of the overlap of the
electron and hole wavefunctions on the quantum dot size. We conclude that the
optical quality is best for large quantum dots, which is important in order to
optimally tailor quantum dot emitters for, e.g., quantum electrodynamics
experiments.Comment: 5 pages, 3 figure
Impact Ionization in ZnS
The impact ionization rate and its orientation dependence in k space is
calculated for ZnS. The numerical results indicate a strong correlation to the
band structure. The use of a q-dependent screening function for the Coulomb
interaction between conduction and valence electrons is found to be essential.
A simple fit formula is presented for easy calculation of the energy dependent
transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for
publication in PRB as brief Report (LaTeX source replaces raw-postscript
file
- …