119 research outputs found

    Disorder Effect on the Vortex Pinning by the Cooling Process Control in the Organic Superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the influence of disorders in terminal ethylene groups of BEDT-TTF molecules (ethylene-disorders) on the vortex pinning of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br. Magnetization measurements are performed under different cooling-processes. The second peak in the magnetization hysteresis curve is observed for all samples studied, and the hysteresis width of the magnetization becomes narrower by cooling faster. In contradiction to the simple pinning effect of disorder, this result shows the suppression of the vortex pinning force by introducing more ethylene-disorders. The ethylene-disorder domain model is proposed for explaining the observed result. In the case of the system containing a moderate number of the ethylene-disorders, the disordered molecules form a domain structure and it works as an effective pinning site. On the contrary, an excess number of the ethylene-disorders may weaken the effect of the domain structure, which results in the less effective pinning force on the vortices.Comment: 6 pages, 6 figure

    Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors κ\kappa-(BEDT-TTF)2X_2X (XX = Cu(NCS)2_2 and Cu[N(CN)2_2]Br)

    Full text link
    We report the in-plane penetration depth λ\lambda_{\parallel} of single crystals κ\kappa-(BEDT-TTF)2X_2X (X=X= Cu(NCS)2_2 and Cu[N(CN)2_2]Br) by means of the reversible magnetization measurements under the control of cooling-rate. In XX = Cu(NCS)2_2, λ(0)\lambda_{\parallel}(0) as an extrapolation toward TT = 0 K does not change by the cooling-rate within the experimental accuracy, while TcT_{\textrm{c}} is slightly reduced. On the other hand, in XX = Cu[N(CN)2_2]Br, λ(0)\lambda_{\parallel}(0) indicates a distinct increase by cooling faster. The different behavior of λ(0)\lambda_{\parallel}(0) on cooling-rate between the two salts is quantitatively explained in terms of the local-clean approximation (London model), considering that the former salt belongs to the very clean system and the later the moderate clean one. The good agreement with this model demonstrates that disorders of ethylene-group in BEDT-TTF introduced by cooling faster increase the electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure

    Metal-insulator transition and charge ordering in the extended Hubbard model at one-quarter filling

    Get PDF
    We study with exact diagonalization the zero temperature properties of the quarter-filled extended Hubbard model on a square lattice. We find that increasing the ratio of the intersite Coulomb repulsion, VV, to the band width drives the system from a metal to a charge ordered insulator. The evolution of the optical conductivity spectrum with increasing VV is compared to the observed optical conductivity of several layered molecular crystals with the theta and beta'' crystal structures.Comment: 5 pages, 3 figure

    A comparison of methods for the determination of dissolved oxygen in seawater

    Get PDF
    An intercalibration of dissolved oxygen methods was conducted at 2 stations in the Sargasso Sea between April 28 and May 3, 1990. The experiment compared three techniques using automated endpoint detection with the manual Winkler method using a starch endpoint. Institutions participating in the intercomparison were the Bedford Institute of Oceanography (automated photometric titration), the University of Delaware (automated amperometric titration), the Scripps Institution of Oceanography (manual titration), and the Woods Hole Oceanographic Institution (automated amperometric titration). Differences in measured oxygen concentrations between institutions were encouragingly small. However, small, systematic differences in dissolved oxygen between institutions did exist. The range between the highest and lowest oxygen values reported by the 4 institutions never exceeded 0.6% over the entire concentration range studied (3.4 to 6.2 mlj1). The good agreement is probably due to the use of the essentials of Carpenter's (1965) modification of the Winkler method by all institutions. The intercalibration revealed several aspects of dissolved oxygen measurements that require further research: (1) the intercalibration should be extended to very low oxygen concentrations; (2) procedures for measur ing and applying corrections for the seawater blank need to be formalized; (3) a simple procedure to measure the temperature of seawater at the time of sampling needs to be developed; and (4) the solubility of atmospheric oxygen in the Winkler reagents must be measured as a function of temperature. The intercalibration also revealed that analytical techniques required for precise and accurate volumetric measurements were often not applied, even by experienced analysts. It was found that uncalibrated pipets were used to dispense standards, that the volumes of oxygen flasks were not corrected for buoyancy, and that corrections for the thermal expansion of aqueous solutions were often not applied.This research was supported by National Science Foundation Grants OCE 88- 22542 and OCE 88-21977 and OCE 89-07815. Preparation and distribution of this report by the WHP Office, Woods Hole Oceanographic Institution, Woods Hole, MA. 02543 USA, was supported by NSF Grant OCE 89-07815

    Real space imaging of the metal - insulator phase separation in the band width controlled organic Mott system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br

    Full text link
    Systematic investigation of the electronic phase separation on macroscopic scale is reported in the organic Mott system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br. Real space imaging of the phase separation is obtained by means of scanning micro-region infrared spectroscopy using the synchrotron radiation. The phase separation appears near the Mott boundary and changes its metal-insulator fraction with the substitution ratio xx in κ\kappa-[(hh-BEDT-TTF)1x_{1-x}(dd-BEDT-TTF)x_{x}]2_{2}Cu[N(CN)2_{2}]Br, of which band width is controlled by the substitution ratio xx between the hydrogenated BEDT-TTF molecule (hh-BEDT-TTF) and the deuterated one (dd-BEDT-TTF). The phase separation phenomenon observed in this class of organics is considered on the basis of the strongly correlated electronic phase diagram with the first order Mott transition.Comment: 10 pages, 8 figure

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure

    High Efficiency Megawatt Motor Preliminary Design

    Get PDF
    The High Efficiency Megawatt Motor (HEMM) is being designed to meet the needs of Electrified Aircraft Propulsion (EAP). A preliminary design has been completed and risk reduction activities are being conducted in three key areas: cryogenic cooler design, superconducting rotor coil design and manufacturing, and stator thermal management. The key objective of HEMM is to establish a motor technology which simultaneously attains high specific power (>16kW/kg ratio to electromagnetic weight) and high efficiency (>98%) by judicious application of high temperature superconducting wire and integrated thermal management. Another important feature is to achieve the performance goals with an eye to aircraft integration constraints. An electromagnetic analysis was performed which shows that the proposed HEMM design meets the performance objectives if key current capability and mechanical constraints are achieved. The risk reduction activities are the first assessment of the key design features. The HEMM technology could be applied to a range of aircraft types that require megawatt level electrical power

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure

    Pairing Symmetry Competition in Organic Superconductors

    Full text link
    A review is given on theoretical studies concerning the pairing symmetry in organic superconductors. In particular, we focus on (TMTSF)2_2X and κ\kappa-(BEDT-TTF)2_2X, in which the pairing symmetry has been extensively studied both experimentally and theoretically. Possibilities of various pairing symmetry candidates and their possible microscopic origin are discussed. Also some tests for determining the actual pairing symmtery are surveyed.Comment: 16 pages, 8 figures, to be published in J. Phys. Soc. Jpn., special issue on "Organic Conductors

    High Efficiency Megawatt Motor Conceptual Design

    Get PDF
    The High Efficiency Megawatt Motor (HEMM) is being designed to meet the needs of Electrified Aircraft Propulsion (EAP). The key objective of this work is to establish a motor technology which simultaneously attains high specific power (>16kW/kg ratio to electromagnetic weight) and high efficiency (>98%) by judicious application of high temperature superconducting wire and integrated thermal management. Another important feature is to achieve the performance goals with an eye to aircraft integration constraints. An electromagnetic analysis was performed which shows that the proposed HEMM design meets the performance objectives if key current capability and mechanical constraints are achieved. Sensitivity of motor power and performance to those parameters is illustrated. The HEMM technology could be applied to a range of aircraft types that require megawatt level electrical power
    corecore