53 research outputs found

    Celiprolol double-peak occurrence and gastric motility: Nonlinear mixed effects modeling of bioavailability data obtained in dogs

    Full text link
    Investigation of the underlying mechanism leading to inter- and intrasubject variations in the plasma concentration-time profiles of drugs (1) can considerably benefit rational drug therapy. The significant effect of gastric emptying on the rate and extent of celiprolol absorption and its role with respect to double-peak formation was demonstrated in the present study. In four dogs racemic celiprolol was dosed perorally in a crossover design during four different phases of the fasted-state gastric cycle and gastric motility was recorded simultaneously using a manometric measurement system. Intravenous doses were also given to obtain disposition and bioavailability parameters. The blood samples were assayed by a stereoselective HPLC method (2). The time to onset of the active phase of the gastric cycle showed an excellent correlation with the time to celiprolol peak concentration. Furthermore, bioavailability was increased when celiprolol was administered during the active phase. Double peaks were observed when the first active phase was relatively short, suggesting that a portion of the drug remained in the stomach until the next active phase. Population pharmacokinetic modeling of the data with a two-compartment open model with two lag times incorporating the motility data confirmed the effect of time to gastric empyting on the variability of the oral pharmacokinetics of celiprolol. The fasted-state motility phases determine the rate and extent of celiprolol absorption and influence the occurrence of double peaks. Peak plasma levels of celiprolol exhibit less variability if lag times, and therefore gastric emptying times, are taken into consideration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45049/1/10928_2006_Article_BF02354285.pd

    Diclofenac Hypersensitivity: Antibody Responses to the Parent Drug and Relevant Metabolites

    Get PDF
    Background: Hypersensitivity reactions against nonsteroidal antiinflammatory drugs (NSAIDs) like diclofenac (DF) can manifest as Type I-like allergic reactions including systemic anaphylaxis. However, except for isolated case studies experimental evidence for an IgE-mediated pathomechanism of DF hypersensitivity is lacking. In this study we aimed to investigate the possible involvement of drug-and/or metabolite-specific antibodies in selective DF hypersensitivity. Methodology/Principal Findings: DF, an organochemically synthesized linkage variant, and five major Phase I metabolites were covalently coupled to carrier proteins. Drug conjugates were analyzed for coupling degree and capacity to crosslink receptor-bound IgE antibodies from drug-sensitized mice. With these conjugates, the presence of hapten-specific IgE antibodies was investigated in patients' samples by ELISA, mediator release assay, and basophil activation test. Production of sulfidoleukotrienes by drug conjugates was determined in PBMCs from DF-hypersensitive patients. All conjugates were shown to carry more than two haptens per carrier molecule. Immunization of mice with drug conjugates induced drug-specific IgE antibodies capable of triggering mediator release. Therefore, the conjugates are suitable tools for detection of drug-specific antibodies and for determination of their anaphylactic activity. Fifty-nine patients were enrolled and categorized as hypersensitive either selectively to DF or to multiple NSAIDs. In none of the patients' samples evidence for drug/metabolite-specific IgE in serum or bound to allergic effector cells was found. In contrast, a small group of patients (8/59, 14%) displayed drug/metabolite-specific IgG. Conclusions/Significance: We found no evidence for an IgE-mediated effector mechanism based on haptenation of protein carriers in DF-hypersensitive patients. Furthermore, a potential involvement of the most relevant metabolites in DF hypersensitivity reactions could be excluded

    Expression of RFC/SLC19A1 is Associated with Tumor Type in Bladder Cancer Patients

    Get PDF
    Urinary bladder cancer (UBC) ranks ninth in worldwide cancer. In Egypt, the pattern of bladder cancer is unique in that both the transitional and squamous cell types prevail. Despite much research on the topic, it is still difficult to predict tumor progression, optimal therapy and clinical outcome. The reduced folate carrier (RFC/SLC19A1) is the major transport system for folates in mammalian cells and tissues. RFC is also the primary means of cellular uptake for antifolate cancer chemotherapeutic drugs, however, membrane transport of antifolates by RFC is considered as limiting to antitumor activity. The purpose of this study was to compare the mRNA expression level of RFC/SLC19A1 in urothelial and non-urothelial variants of bladder carcinomas. Quantification of RFC mRNA in the mucosa of 41 untreated bladder cancer patients was performed using RT-qPCR. RFC mRNA steady-state levels were ∼9-fold higher (N = 39; P<0.0001) in bladder tumor specimens relative to normal bladder mRNA. RFC upregulation was strongly correlated with tumor type (urothelial vs. non-urothelial; p<0.05) where median RFC mRNA expression was significantly (p<0.05) higher in the urothelial (∼14-fold) compared to the non-urothelial (∼4-fold) variant. This may account for the variation in response to antifolate-containing regimens used in the treatment of either type. RFC mRNA levels were not associated with tumor grade (I, II and III) or stage (muscle-invasive vs. non-muscle invasive) implying that RFC cannot be used for prognostic purposes in bladder carcinomas and its increased expression is an early event in human bladder tumors pathogenesis. Further, RFC can be considered as a potential marker for predicting response to antifolate chemotherapy in urothelial carcinomas

    Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge.

    Get PDF
    The need for filling information gaps while reducing toxicity testing in animals is becoming more predominant in risk assessment. Recent legislations are accepting in silico approaches for predicting toxicological outcomes. This article describes the results of Quantitative Structure Activity Relationship (QSAR) modeling efforts within Tox21 Data Challenge 2014 1 , which calculated the best balanced accuracy across all molecular pathway endpoints as well as the highest scores for ATAD5 and mitochondrial membrane potential disruption. Automated QSPR workflow systems, OCHEM (http://ochem.eu), the analytics platform, KNIME and the statistics software, CRAN R, were used to conduct the analysis and develop consensus models using 10 different descriptor sets. A detailed analysis of QSAR models for all 12 molecular pathways and the effect of underlying models&#39; accuracy on the quality of the consensus model are provided. The resulting consensus models yielded a balanced accuracy as high as 88.1% &plusmn; 0.6 for mitochondrial membrane disruptors. Such high balanced accuracy and use of the applicability domain show a promising potential for in silico modeling to complement design HTS screening experiments. The comprehensive statistics of all models are publicly available online at https://github.com/amaziz/Tox21-Challenge-Publication while the developed consensus models can be accessed at http://ochem.eu/article/98009

    Gemfibrozil and its oxidative metabolites: quantification of aglycones, acyl glucuronides, and covalent adducts in samples from preclinical and clinical kinetic studies

    No full text
    A gradient reversed-phase HPLC analysis for the direct measurement of gemfibrozil (GEM) and four oxidative metabolites in plasma and urine of humans and in tissue homogenates of rats was developed. The corresponding acyl glucuronides and the covalently bound protein adducts (in protein precipitates) were determined after liberation from the respective conjugates via alkaline hydrolysis. The limits of detection for the covalent adducts in human plasma are: 10 ng ml(-1) (GEM), 20 ng ml(-1) (M1), 0.5 ng ml(-1) (M2, M4), and 5 ng ml(-1) (M3). The method was validated with respect to selectivity, recovery, linearity, precision, and accuracy. It has been applied to the analysis of preclinical and clinical studies. Pharmacokinetic profiles of gemfibrozil, its metabolites, and covalent adducts in human plasma and rat tissue homogenates are given. (C) 2000 Elsevier Science B.V. All rights reserved

    P-glycoprotein transporters and the gastrointestinal tract: Evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound

    No full text
    Among the different application routes peroral administration remains the one most widely used, Hence, mechanisms affecting p.o. bioavailability are of particular interest, also in drug development, In recent years, intestinal drug Secretion mediated by the multi-drug resistance gene product P-glycoprotein (PEP) has been discovered as a possible mechanism of low and erratic bioavailability, Due to the saturability of this process, a dose-dependent apparent oral clearance may be observed which decreases upon increasing dose, However, in vivo intestinal secretion might be revealed only in the lower or subtherapeutic dose range, in permeability studies with Caco-2 cell monolayers, the MDR-reversing agent verapamil inhibits secretion of P-glycoprotein substrates and, hence, increases apical-to-basolateral permeability. The aim of the rat studies with talinolol presented here was to test the relevance of the intestinal secretion process as well as the extent of inhibition by verapamil in ex vivo, in situ, and in vivo talinolol/verapamil drug-drug interaction studies. Intestinal secretion of talinolol was detected indirectly in ex vivo studies via transport inhibition with verapamil and directly in in situ intestinal perfusions in rats following a talinolol i.v. bolus. Both i.v, and p.o. verapamil appear to affect the concentration-time profiles of talinolol. Relevant observations with respect to drug absorption are the decreased apparent oral clearance upon verapamil coadministration as well as the decreased t(max) and mean absorption times at high verapamil doses. Talinolol may be regarded as a potential model compound for mechanistic studies on Pgp interactions, including permeability as well as binding studies and the involvement of transporters other than Pgp
    • …
    corecore