70 research outputs found

    Glucose Starvation Boosts Entamoeba histolytica Virulence

    Get PDF
    The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS). The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP), a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1) which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A) and cysteine proteinase A5 (CP-A5), two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon

    Spatio-temporal indications of sub-cortical involvement in leftward bias of spatial attention

    No full text
    A leftward bias is well known in humans and animals, and commonly related to the right hemisphere dominance for spatial attention. Our previous fMRI study suggested that this bias is mediated by faster conduction from the right to left parietal cortices, than the reverse (Siman-Tov et al., 2007). However, the limited temporal resolution of fMRI and evidence on the critical involvement of sub-cortical regions in orienting of spatial attention suggested further investigation of the leftward bias using multi-scale measurement. In this simultaneous EEG–fMRI study, healthy participants were presented with face pictures in either the right or left visual fields while performing a central fixation task. Temporo-occipital event related potentials, time-locked to the stimulus onset, showed an association between faster conduction from the right to the left hemisphere and higher fMRI activation in the left pulvinar nucleus following left visual field stimulation. This combined-modal finding provides original evidence of the involvement of sub-cortical central attention-related regions in the leftward bias. This assertion was further strengthened by a DCM analysis designated at cortical (i.e., inferior parietal sulcus; IPS) and sub-cortical (pulvinar nucleus) attention related nodes that revealed: 1. Stronger inter-hemispheric connections from the right to left than vice versa, already at the pulvinar level. 2. Stronger connections within the right than the left hemisphere, from the pulvinar to the IPS. This multi-level neural superiority can guide future efforts in alleviating attention deficits by focusing on improving network connectivity
    • …
    corecore