238 research outputs found

    Evolution of a coherent array of Bose-Einstein Condensates in a magnetic trap

    Full text link
    We investigate the evolution process of the interference pattern for a coherent array of Bose-Einstein condensates in a magnetic trap after the optical lattices are switched off. It is shown that there is a decay and revival of the density oscillation for the condensates confined in the magnetic trap. We find that, due to the confinement of the magnetic trap, the interference effect is much stronger than that of the experiment induced by Pedri et al. (Phys. Rev. Lett, {\bf 87}, 220401), where the magnetic trap is switched off too. The interaction correction to the interference effect is also discussed for the density distribution of the central peak.Comment: RevTex, 17 pages,9 figures. E-mail: [email protected]

    Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps

    Full text link
    The analytical probability distribution of the quasi-2D (and purely 2D) ideal and interacting Bose gas are investigated by using a canonical ensemble approach. Using the analytical probability distribution of the condensate, the statistical properties such as the mean occupation number and particle number fluctuations of the condensate are calculated. Researches show that there is a continuous crossover of the statistical properties from a quasi-2D to a purely 2D ideal or interacting gases. Different from the case of a 3D Bose gas, the interaction between atoms changes in a deep way the nature of the particle number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]

    From \u3cem\u3eJ\u3c/em\u3e\u3csub\u3eeff\u3c/sub\u3e=1/2 Insulator to \u3cem\u3ep\u3c/em\u3e-Wave Superconductor in Single-Crystal Sr\u3csub\u3e2\u3c/sub\u3eIr\u3csub\u3e1−\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eRu\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eO4 (0≤\u3cem\u3ex\u3c/em\u3e≤1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4dRu4+(4d4) ions for 5dIr4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC, and thus rebalances the competing energies in single-crystal Sr2Ir1−xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison with Rh-doped Sr2IrO4, highlighting important similarities and differences

    Positional differences in the wound transcriptome of skin and oral mucosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. Recent studies suggest that intrinsic differences in inflammation, growth factor production, levels of stem cells, and cellular proliferation capacity may underlie the exceptional healing that occurs in oral mucosa. The current study was designed to compare the transcriptomes of oral mucosal and skin wounds in order to identify critical differences in the healing response at these two sites using an unbiased approach.</p> <p>Results</p> <p>Using microarray analysis, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent sized wounds. Samples were examined from days 0 to 10 and spanned all stages of the wound healing process. Using unwounded matched tissue as a control, filtering identified 1,479 probe sets in skin wounds yet only 502 probe sets in mucosal wounds that were significantly differentially expressed over time. Clusters of genes that showed similar patterns of expression were also identified in each wound type. Analysis of functionally related gene expression demonstrated dramatically different reactions to injury between skin and mucosal wounds. To explore whether site-specific differences might be derived from intrinsic differences in cellular responses at each site, we compared the response of isolated epithelial cells from skin and oral mucosa to a defined in vitro stimulus. When cytokine levels were measured, epithelial cells from skin produced significantly higher amounts of proinflammatory cytokines than cells from oral mucosa.</p> <p>Conclusions</p> <p>The results provide the first detailed molecular profile of the site-specific differences in the genetic response to injury in mucosa and skin, and suggest the divergent reactions to injury may derive from intrinsic differences in the cellular responses at each site.</p

    Evolution of Magnetism in Single-Crystal Ca2Ru1-xIrxO4 (0< x <0.65)

    Get PDF
    We report structural, magnetic, transport and thermal properties of single-crystal Ca2Ru1-xIrxO4 (0 < x< 0.65). Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator transition at TMI = 357 K, which is well separated from antiferromagnetic order at TN = 110 K. Substitution of 5d element, Ir, for Ru enhances spin-orbit coupling (SOC) and locking between the structural distortions and magnetic moment canting. In particular, Ir doping intensifies the distortion or rotation of Ru/IrO6 octahedra and induces weak ferromagnetic behavior along the c-axis. Moreover, the magnetic ordering temperature TN increases from 110 K at x = 0 to 215 K with enhanced magnetic anisotropy at x = 0.65. The effect of Ir doping sharply contrasts with that of 3d-element doping such as Cr, Mn and Fe, which suppresses TN and induces unusual negative volume thermal expansion. The stark difference between 3d- and 5d-element doping underlines a strong magnetoelastic coupling inherent in the Ir-rich oxides.Comment: 15 pages, 5 figure

    Fluctuations of the Condensate in Ideal and Interacting Bose Gases

    Full text link
    We investigate the fluctuations of the condensate in the ideal and weakly interacting Bose gases confined in a box of volume V within canonical ensemble. Canonical ensemble is developed to describe the behavior of the fluctuations when different methods of approximation to the weakly interacting Bose gases are used. Research shows that the fluctuations of the condensate exhibit anomalous behavior for the interacting Bose gas confined in a box.Comment: RevTex, 4 Figs,E-mail:[email protected], corrected typo

    Evolution of magnetism in single-crystal Ca\u3csub\u3e2\u3c/sub\u3eRu\u3csub\u3e1−\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eIr\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e(0≤\u3cem\u3ex\u3c/em\u3e≤0.65)

    Get PDF
    We report structural, magnetic, transport, and thermal properties of single-crystal Ca2Ru1−xIrxO4(0≤x≤0.65). Ca2RuO4 is a structurally driven Mott insulator with a metal-insulator transition at TMI=357K, which is well separated from antiferromagnetic order at TN=110K. Substitution of a 5d element, Ir, for Ru enhances spin-orbit coupling and locking between the structural distortions and magnetic moment canting. Ir doping intensifies the distortion or rotation of Ru/IrO6 octahedra and induces weak ferromagnetic behavior along the c axis. In particular, Ir doping suppresses TN but concurrently causes an additional magnetic ordering TN2 at a higher temperature up to 210 K for x=0.65. The effect of Ir doping sharply contrasts with that of 3d-element doping such as Cr, Mn, and Fe, which suppresses TN and induces unusual negative volume thermal expansion. The stark difference between 3d- and 5d-element doping underlines a strong magnetoelastic coupling inherent in the Ir-rich oxides

    Ground-State Tuning of Metal-Insulator Transition by Compositional Variations in BaIr\u3csub\u3e1−\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eRu\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e (0 ≤ \u3cem\u3ex\u3c/em\u3e ≤ 1)

    Get PDF
    Hexagonal BaIrO3 is a magnetic insulator driven by the spin-orbit interaction (SOI), whereas BaRuO3 is an enhanced paramagnetic metal. Our investigation of structural, magnetic, transport, and thermal properties reveals that substitution of Ru4+ (4d4) ions for Ir4+ (5d5) ions in BaIrO3 reduces the magnitudes of the SOI and a monoclinic structural distortion and rebalances the competition between the SOI and the lattice degrees of freedom to render an evolution from a magnetic insulting state to a robust metallic state. The central findings of this paper are as follows: (1) light Ru doping (0 \u3c x ≤ 0.15) prompts simultaneous, precipitous drops in both the magnetic ordering temperature TN and the electrical resistivity, and (2) heavier Ru doping (0.41 ≤ x ≤ 0.9) induces a robust metallic state without any long-range magnetic order. All results suggest a critical role of the lattice degrees of freedom in determining the ground state in the heavy transition-metal oxides

    Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation

    Get PDF
    UDP-glucuronosyltransferase (UGT) 1A1 is the only transferase capable of conjugating serum bilirubin. However, temporal delay in the development of the UGT1A1 gene leads to an accumulation of serum bilirubin in newborn children. Neonatal humanized UGT1 (hUGT1) mice, which accumulate severe levels of total serum bilirubin (TSB), were treated by oral gavage with obeticholic acid (OCA), a potent FXR agonist. OCA treatment led to dramatic reduction in TSB levels. Analysis of UGT1A1 expression confirmed that OCA induced intestinal and not hepatic UGT1A1. Interestingly, Cyp2b10, a target gene of the nuclear receptor CAR, was also induced by OCA in intestinal tissue. In neonatal hUGT1/Car(-/-) mice, OCA was unable to induce CYP2B10 and UGT1A1, confirming that CAR and not FXR is involved in the induction of intestinal UGT1A1. However, OCA did induce FXR target genes, such as Shp, in both intestines and liver with induction of Fgf15 in intestinal tissue. Circulating FGF15 activates hepatic FXR and, together with hepatic Shp, blocks Cyp7a1 and Cyp7b1 gene expression, key enzymes in bile acid metabolism. Importantly, the administration of OCA in neonatal hUGT1 mice accelerates intestinal epithelial cell maturation, which directly impacts on induction of the UGT1A1 gene and the reduction in TSB levels. Accelerated intestinal maturation is directly controlled by CAR, since induction of enterocyte marker genes sucrase-isomaitase, alkaline phosphatase 3, and keratin 20 by OCA does not occur in hUGT1/Car(-/-) mice. Thus, new findings link an important role for CAR in intestinal UGT1A1 induction and its role in the intestinal maturation pathway. SIGNIFICANCE STATEMENT Obeticholic acid (OCA) activates FXR target genes in both liver and intestinal tissues while inducing intestinal UGT1A1, which leads to the elimination of serum bilirubin in humanized UGT1 mice. However, the induction of intestinal UGT1A1 and the elimination of bilirubin by OCA is driven entirely by activation of intestinal CAR and not FXR. The elimination of serum bilirubin is based on a CARdependent mechanism that facilitates the acceleration of intestinal epithelium cell differentiation, an event that underlies the induction of intestinal UGT1A1

    Decoupling of the Antiferromagnetic and Insulating States in Tb-Doped Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    Sr2IrO4 is a spin-orbit-coupled insulator with an antiferromagnetic (AFM) transition at TN=240K. We report results of a comprehensive study of single-crystal Sr2Ir1−xTbxO4(0≤x≤0.03). This study found that a mere 3% (x=0.03) of tetravalent Tb4+(4f7) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of the magnetic interactions and charge gap. The insulating state at x=0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95,0,0) and (0,0.95,0) in the neutron diffraction, suggesting a spiral or spin-density-wave order. It is apparent that Tb doping effectively changes the relative strength of the spin-orbit interaction (SOI) and the tetragonal crystal electric field and enhances the Hund\u27s rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM is accompanied by no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and causes a persistent insulating state. This work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate
    corecore