1,212 research outputs found

    The change of plasma C-reactive protein and metabolite concentrations, and MPS sick degree score in Landrase selected for resistance to MPS, Large Yorkshire selected for immune performances and the crossbreed

    Get PDF
    Swine Mycoplasma Hyopneumoniea, hp, is known as a major factor to affect for the specific pneumonia (MPS). This damages is very serious because carrier rate of hp in piglets from 3 to 4 months of age is very high, the rate of piglets that the response of antibody to hp shows positive is 80 % over, and the rate that has very terrible tissue from MPS is 51% in Japanese pig farm. We bred a resistant strain to MPS by selection to decrease MPS pathogenic condition over 5 generations using Landrase (MPS strain), and a high immune performance strain by selection for peripheral phagocytosis, complement activity and antibody production against erysipelatous vaccine using Large Yorkshire (HI strain)

    Maintaining unstructured case bases

    Full text link

    CBR model for the intelligent management of customer support centers

    Full text link
    [EN] In this paper, a new CBR system for Technology Management Centers is presented. The system helps the staff of the centers to solve customer problems by finding solutions successfully applied to similar problems experienced in the past. This improves the satisfaction of customers and ensures a good reputation for the company who manages the center and thus, it may increase its profits. The CBR system is portable, flexible and multi-domain. It is implemented as a module of a help-desk application to make the CBR system as independent as possible of any change in the help-desk. Each phase of the reasoning cycle is implemented as a series of configurable plugins, making the CBR module easy to update and maintain. This system has been introduced and tested in a real Technology Management center ran by the Spanish company TISSAT S.A.Financial support from Spanish government under grant PROFIT FIT-340001-2004-11 is gratefully acknowledgeHeras Barberá, SM.; Garcia Pardo Gimenez De Los Galanes, JA.; Ramos-Garijo Font De Mora, R.; Palomares Chust, A.; Julian Inglada, VJ.; Rebollo Pedruelo, M.; Botti, V. (2006). CBR model for the intelligent management of customer support centers. En Lecture Notes in Computer Science. Springer Verlag (Germany). 663-670. https://doi.org/10.1007/11875581_80S663670Acorn, T., Walden, S.: SMART: SupportManagement Automated Reasoning Technology for Compaq Customer Service. In: Scott, A., Klahr, P. (eds.) Proceedings of the 2 International Conference on Intelligent Tutoring Systems, ITS-92 Berlin, vol. 4, pp. 3–18. AAAI Press, Menlo Park (1992)Simoudis, E.: Using Case-Based Retrieval for Customer Technical Support. IEEE Intelligent Systems 7, 10–12 (1992)Kriegsman, M., Barletta, R.: Building a Case-Based Help Desk Application. IEEE Expert: Intelligent Systems and Their Applications 8, 18–26 (1993)Shimazu, H., Shibata, A., Nihei, K.: Case-Based Retrieval Interface Adapted to Customer-Initiated Dialogues in Help Desk Operations. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th National Conference on Artificial Intelligence, vol. 1, pp. 513–518. AAAI Press, Menlo Park (1994)Raman, R., Chang, K.H., Carlisle, W.H., Cross, J.H.: A self-improving helpdesk service system using case-based reasoning techniques. Computers in Industry 2, 113–125 (1996)Kang, B.H., Yoshida, K., Motoda, H., Compton, P.: Help Desk System with Intelligent Interface. Applied Artificial Intelligence 11, 611–631 (1997)Roth-Berghofer, T., Iglezakis, I.: Developing an Integrated Multilevel Help-Desk Support System. In: Proceedings of the 8th German Workshop on Case-Based Reasoning, pp. 145–155 (2000)Goker, M., Roth-Berghofer, T.: The development and utilization of the case-based help-desk support system HOMER. Engineering Applications of Artificial Intelligence 12, 665–680 (1999)Roth-Berghofer, T.R.: Learning from HOMER, a case-based help-desk support system. In: Melnik, G., Holz, H. (eds.) Advances in Learning Software Organizations, pp. 88–97. Springer, Heidelberg (2004)Bergmann, R., Althoff, K.D., Breen, S., Göker, M., Manago, M., Traphöner, R., Wess, S.: Developing Industrial Case-Based Reasoning Applications. In: The INRECA Methodology, 2nd edn. LNCS (LNAI), vol. 1612. Springer, Heidelberg (2003)eGain (2006), http://www.egain.comKaidara Software Corporation (2006), http://www.kaidara.com/Empolis Knowledge Management GmbH - Arvato AG (2006), http://www.empolis.com/Althoff, K.D., Auriol, E., Barletta, R., Manago, M.: A Review of Industrial Case-Based Reasoning Tools. AI Perspectives Report. Goodall, A., Oxford (1995)Watson, I.: Applying Case-Based Reasoning. Techniques for Enterprise Systems. Morgan Kaufmann Publishers, Inc. California (1997)empolis: empolis Orenge Technology Whitepaper. Technical report, empolis GmbH (2002)Tissat, S.A. (2006), http://www.tissat.esGiraud-Carrier, C., Martinez, T.R.: An integrated framework for learning and reasoning. Journal of Artificial Intelligence Research 3, 147–185 (1995)Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yanez, J.C.: Neuro-symbolic system for Business Internal Control. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp. 1–10. Springer, Heidelberg (2004)Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and system approaches. AI Communications 7(1), 39–59 (1994)Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1997
    • …
    corecore