926 research outputs found

    Benchmarking LHC background particle simulation with the CMS triple-GEM detector

    Get PDF
    In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN\u27s Large Hadron Collider (LHC). The demonstrator\u27s design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×1034^{34} cm−2^{-2} s−1^{-1}. The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 10−11^{-11} to 104^{4} MeV for neutrons, 10−3^{-3} to 104^{4} MeV for Îł\u27s, 10−2^{-2} to 104^{4} MeV for e±^{±}, and 10−1^{-1} to 104^{4} MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC

    Modeling the triple-GEM detector response to background particles for the CMS Experiment

    Get PDF
    An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC). The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5×1034\times10^{34} cm−2^{-2} s−1^{-1}. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from 10−1110^{-11} to 10410^{4} MeV for neutrons, 10−310^{-3} to 10410^{4} MeV for Îł\gamma's, 10−210^{-2} to 10410^{4} MeV for e±e^{\pm}, and 10−110^{-1} to 10410^{4} MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.Comment: 16 pages, 9 figures, 6 table

    Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation

    Get PDF
    The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7th^{th} of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, pshort_{short}HV^{HV} OFF^{OFF} = 0.42−0.35+0.94^{-0.35+0.94}% with detector HV OFF and pshort_{short}HV^{HV} OFF^{OFF} < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The production of a top quark-antiquark pair in association with a W boson (ttˉW)(t\bar{t}W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb−1^{−1}. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive (ttˉW)(t\bar{t}W) production cross section in the full phase space is measured to be 868 ± 40(stat) ± 51(syst) fb. The (ttˉW)+(t\bar{t}W)+ and (ttˉW)−(t\bar{t}W)− cross sections are also measured as 553 ± 30(stat) ± 30(syst) and 343 ± 26(stat) ± 25(syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61±0.15(stat)−0.05+0.07^{+0.07}_{−0.05}(syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF
    • 

    corecore