4,877 research outputs found

    SETI science working group report

    Get PDF
    This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications

    Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites

    Full text link
    The electrical resistivity, Hall coefficient, and thermopower as functions of temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x <= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude and temperature dependence of the Hall mobility for these compounds is found to be inconsistent with small-polaron theory. The transport data are better described by the Feynman polaron theory and imply intermediate coupling (alpha \~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10 m_0.Comment: 7 pp., 7 Fig.s, to be published, PR

    The Path Integral for 1+1-dimensional QCD

    Get PDF
    We derive a path integral expression for the transition amplitude in 1+1-dimensional QCD starting from canonically quantized QCD. Gauge fixing after quantization leads to a formulation in terms of gauge invariant but curvilinear variables. Remainders of the curved space are Jacobians, an effective potential, and sign factors just as for the problem of a particle in a box. Based on this result we derive a Faddeev-Popov like expression for the transition amplitude avoiding standard infinities that are caused by integrations over gauge equivalent configurations.Comment: 16 pages, LaTeX, 3 PostScript figures, uses epsf.st

    Multi-Step Processing of Spatial Joins

    Get PDF
    Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last year’s conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by the following two steps. First of all, sophisticated approximations are used to identify answers as well as to filter out false hits from the set of candidates. For this purpose, we investigate various types of conservative and progressive approximations. In the last step, the exact geometry of the remaining candidates has to be tested against the join predicate. The time required for computing spatial join predicates can essentially be reduced when objects are adequately organized in main memory. In our approach, objects are first decomposed into simple components which are exclusively organized by a main-memory resident spatial data structure. Overall, we present a complete approach of spatial join processing on complex spatial objects. The performance of the individual steps of our approach is evaluated with data sets from real cartographic applications. The results show that our approach reduces the total execution time of the spatial join by factors

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Vafa-Witten Estimates for Compact Symmetric Spaces

    Full text link
    We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rk G-rk H\le 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement.Comment: LaTeX, 11 pages. V2: Rigidity statement added, minor changes. To appea

    SNAI transcription factors mediate epithelial--mesenchymal transition in lung fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterised by accumulation of activated (myo)fibroblasts and excessive extracellular matrix deposition. The enhanced accumulation of (myo)fibroblasts may be attributed, in part, to the process of transforming growth factor \textgreekb1 (TGF\textgreekb1)-induced epithelial--mesenchymal transition (EMT), the phenotypic switching of epithelial to fibroblast-like cells. Although alveolar epithelial type II (ATII) cells have been shown to undergo EMT, the precise mediators and mechanisms remain to be resolved. The objective of this study is to investigate the role of SNAI transcription factors in the process of EMT and in IPF.Methods: Using quantitative reverse transcription-PCR (RT-PCR), immunofluorescence, immunohistochemistry, western blotting, as well as gain- and loss-of-function studies and functional assays, the role of SNAI1 and SNAI2 in TGF\textgreekb1-induced EMT in ATII cells in vitro was assessed; and the expression of SNAI transcription factors was analysed in experimental and human IPF in vivo.Results: TGF\textgreekb1 treatment increased the expression and nuclear accumulation of SNAI1 and SNAI2, in concert with induction of EMT in ATII cells. SNAI overexpression was sufficient to induce EMT, and small interfering RNA (siRNA)-mediated SNAI depletion attenuated TGF\textgreekb1-induced ATII cell migration and EMT. SNAI expression was elevated in experimental and human IPF and localised to hyperplastic ATII cells in vivo.Conclusions: The results demonstrate that TGF\textgreekb1-induced EMT in ATII cells is essentially controlled by the expression and nuclear translocation of SNAI transcription factors. Increased SNAI1 and SNAI2 expression in experimental and human IPF in vivo suggests that SNAI-mediated EMT may contribute to the fibroblast pool in idiopathic pulmonary fibrosis

    Efficient Processing of Spatial Joins Using R-Trees

    Get PDF
    Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems
    corecore