318 research outputs found

    X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2

    Full text link
    Measurements of polarization and temperature dependent soft x-ray absorption have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co^{3+} and Co^{4+} sites. With the help of a cluster calculation we are able to interpret the Co L_{23}-edge absorption spectrum and find a doping dependent energy splitting between the t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure

    Self Consistent and Renormalized particle-particle RPA in a Schematic Model

    Get PDF
    The dynamical effects of ground state correlations for excitation energies and transition strengths near the superfluid phase transition are studied in the soluble two level pairing model, in the context of the particle-particle self consistent Random Phase Approximation (SCRPA). Exact results are well reproduced across the transition region, beyond the collapse of the standard particle-particle Random Phase Approximation. The effects of two-body correlation in the SCRPA are displayed explicitly.Comment: 11 pages, revtex, 3ps figures, to appear in Phys. Rev.

    Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy

    Full text link
    We introduce a new aproximation scheme for the periodic Anderson model (PAM). The modified alloy approximation represents an optimum alloy approximation for the strong coupling limit, which can be solved within the CPA-formalism. Zero-temperature and finite-temperature phase diagrams are presented for the PAM in the intermediate-valence regime. The diversity of magnetic properties accessible by variation of the system parameters can be studied by means of quasiparticle densities of states: The conduction band couples either ferro- or antiferromagneticaly to the f-levels. A finite hybridization is a necessary precondition for ferromagnetism. However, too strong hybridization generally suppresses ferromagnetism, but can for certain system parameters also lead to a semi-metallic state with unusual magnetic properties. By comparing with the spectral density approximation, the influence of quasiparticle damping can be examined.Comment: 20 pages, 13 figure

    Lepton Flavor Violation: Constraints from exotic muon to electron conversion

    Get PDF
    The exotic neutrinoless μe\mu^- - e^- nuclear conversion is studied within the conventional extensions of the standard model as well as in the minimal supersymmetric (SUSY) models with and without R-parity conservation. The dependence of the μe\mu^- - e^- conversion rates on the nucleon and nuclear structure is consistently taken into account. Using our calculated transition matrix elements and the available experimental data on the branching ratio RμeR_{\mu e^-} for 48^{48}Ti and 208^{208}Pb as well as the expected experimental sensitivity for 27^{27}Al employed as a target in the planned at Brookhaven μe\mu^--e^- conversion (MECO) experiment, we extract very severe constraints for the flavor violation parameters. We especially emphasize on the constraints resulting for SUSY R-parity violating parameters.Comment: 14 pages, 2 figures. Based on the Invited talk given by T.S. Kosmas at the International Conference on Non-Accelerator New Physics(NANP'99), Dubna, Russia, 199

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts

    Recent advances in neutrinoless double beta decay search

    Full text link
    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay (0ν0\nu-DBD) experimental discovery could be the ultimate answer to some delicate questions of elementary particle and nuclear physics. The Majorana description of neutrinos allows the 0ν0\nu-DBD process, and consequently either a mass value could be measured or the existence of physics beyond the standard should be confirmed without any doubt. As expected, the 0ν0\nu-DBD measurement is a very difficult field of application for experimentalists. In this paper, after a short summary of the latest results in neutrino physics, the experimental status, the R&D projects, and perspectives in 0ν0\nu-DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic
    corecore