146 research outputs found

    Reverse Hall-Petch effect in ultra nanocrystalline diamond

    Full text link
    We present atomistic simulations for the mechanical response of ultra nanocrystalline diamond, a polycrystalline form of diamond with grain diameters of the order of a few nm. We consider fully three-dimensional model structures, having several grains of random sizes and orientations, and employ state-of-the-art Monte Carlo simulations. We calculate structural properties, elastic constants and the hardness of the material; our results compare well with experimental observations for this material. Moreover, we verify that this material becomes softer at small grain sizes, in analogy to the observed reversal of the Hall-Petch effect in various nanocrystalline metals. The effect is attributed to the large concentration of grain boundary atoms at smaller grain sizes. Our analysis yields scaling relations for the elastic constants as a function of the average grain size.Comment: Proceedings of the IUTAM Symposium on Modelling Nanomaterials and Nanosystems, Aalborg, Denmark, May 19-22 2008; to be published in the IUTAM Bookseries by Springe

    Technique of anterior colporrhaphy: a Dutch evaluation

    Get PDF
    Contains fulltext : 96395.pdf (publisher's version ) (Closed access)INTRODUCTION AND HYPOTHESIS: To evaluate the variation in techniques of anterior colporrhaphy among members of the Dutch Urogynecologic Society. METHODS: A questionnaire evaluating the technique of anterior colporrhaphy, preoperative and postoperative care, and use of the POP-Q score was sent out by e-mail. RESULTS: One hundred thirty-three completed questionnaires were received. The response rate was 65%. There are large variations in incisions, use of hydrodissection, method of plication, and excision of redundant vaginal epithelium. The urinary catheter was generally removed on day 2 after surgery and the vaginal pack on day 1. Less than half of the respondents used the POP-Q score routinely. CONCLUSIONS: Dutch gynecologists use a variety of surgical techniques to operate on a cystocele. This suggests that there is no widely accepted opinion on the best surgical approach. The lack of differentiation between central and lateral defects is striking and in contrast with the, mostly, American literature

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni

    Attenuated Fatigue in Slow Twitch Skeletal Muscle during Isotonic Exercise in Rats with Chronic Heart Failure

    Get PDF
    During isometric contractions, slow twitch soleus muscles (SOL) from rats with chronic heart failure (chf) are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic) contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf) if left ventricle end diastolic pressure was >15mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off) at 30Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (Fmax) and the concentrations of ATP and CrP were not different in the two groups. During stimulation, Fmax and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue

    Growth of nanostructures by cluster deposition : a review

    Full text link
    This paper presents a comprehensive analysis of simple models useful to analyze the growth of nanostructures obtained by cluster deposition. After detailing the potential interest of nanostructures, I extensively study the first stages of growth (the submonolayer regime) by kinetic Monte-Carlo simulations. These simulations are performed in a wide variety of experimental situations : complete condensation, growth with reevaporation, nucleation on defects, total or null cluster-cluster coalescence... The main scope of the paper is to help experimentalists analyzing their data to deduce which of those processes are important and to quantify them. A software including all these simulation programs is available at no cost on request to the author. I carefully discuss experiments of growth from cluster beams and show how the mobility of the clusters on the surface can be measured : surprisingly high values are found. An important issue for future technological applications of cluster deposition is the relation between the size of the incident clusters and the size of the islands obtained on the substrate. An approximate formula which gives the ratio of the two sizes as a function of the melting temperature of the material deposited is given. Finally, I study the atomic mechanisms which can explain the diffusion of the clusters on a substrate and the result of their mutual interaction (simple juxtaposition, partial or total coalescence...)Comment: To be published Rev Mod Phys, Oct 99, RevTeX, 37 figure
    corecore